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Summary
State space models (SSMs) are fundamental tools for modeling sequential data. They are
broadly used across engineering disciplines like signal processing and control theory, as well as
scientific domains like neuroscience (Vyas et al., 2020), genetics (Durbin et al., 1998), ecology
(Patterson et al., 2008), computational ethology (Weinreb et al., 2024), economics (Jacquier
et al., 2002), and climate science (Ott et al., 2004). Fast and robust tools for state space
modeling are crucial to researchers in all of these application areas.

State space models specify a probability distribution over a sequence of observations, 𝑦1,… 𝑦𝑇,
where 𝑦𝑡 denotes the observation at time 𝑡. The key assumption of an SSM is that the
observations arise from a sequence of latent states, 𝑧1,… , 𝑧𝑇, which evolve according to a
dynamics model (a.k.a., transition model). An SSM may also use inputs (a.k.a., controls or
covariates), 𝑢1,… , 𝑢𝑇, to steer the latent state dynamics and influence the observations. For
example, in a neuroscience application from Vyas et al. (2020), 𝑦𝑡 represents a vector of spike
counts from ∼ 1000 measured neurons, and 𝑧𝑡 is a lower dimensional latent state that changes
slowly over time and captures correlations among the measured neurons. If sensory inputs
to the neural circuit are known, they can be encoded in 𝑢𝑡. In the computational ethology
application of Weinreb et al. (2024), 𝑦𝑡 represents a vector of 3D locations for several key
points on an animal’s body, and 𝑧𝑡 is a discrete behavioral state that specifies how the animal’s
posture changes over time. In both examples, there are two main objectives: First, we aim
to infer the latent states 𝑧𝑡 that best explain the observed data; formally, this is called state
inference. Second, we need to estimate the dynamics that govern how latent states evolve;
formally, this is part of the parameter estimation process. Dynamax provides algorithms for
state inference and parameter estimation in a variety of SSMs.

There are a few key design choices to make when constructing an SSM:

• What is the type of latent state? E.g., is 𝑧𝑡 a continuous or discrete random variable?
• How do the latent states evolve over time? E.g., are the dynamics linear or nonlinear?
• How are the observations distributed? E.g., are they Gaussian, Poisson, etc.?

Some design choices are so common they have their own names. Hidden Markov models
(HMM) are SSMs with discrete latent states, and linear dynamical systems (LDS) are SSMs
with continuous latent states, linear dynamics, and additive Gaussian noise. Dynamax supports
canonical SSMs and allows the user to construct bespoke models as needed, simply by inheriting
from a base class and specifying a few model-specific functions. For example, see the Creating
Custom HMMs tutorial in the Dynamax documentation.
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Finally, even for canonical models, there are several algorithms for state inference and parameter
estimation. Dynamax provides robust implementations of several low-level inference algorithms
to suit a variety of applications, allowing users to choose among a host of models and algorithms
for their application. More information about state space models and algorithms for state
inference and parameter estimation can be found in the textbooks by Murphy (2023) and
Särkkä & Svensson (2023).

Statement of need
Dynamax is an open-source Python package for state space modeling. Since it is built with JAX

(Bradbury et al., 2018), it supports just-in-time (JIT) compilation for hardware acceleration on
CPU, GPU, and TPU machines. It also supports automatic differentiation for gradient-based
model learning. While other libraries exist for state space modeling in Python (Corenflos
& Särkkä, 2021; Johnson, 2020; Linderman et al., 2020; Seabold & Perktold, 2010; Weiss
et al., 2024) and Julia (Dalle, 2024), Dynamax provides a diverse combination of low-level
inference algorithms and high-level modeling objects that can support a wide range of research
applications in JAX. Additionally, Dynamax implements parallel message passing algorithms
that leverage the associative scan (a.k.a., parallel scan) primitive in JAX to take full advantage
of modern hardware accelerators. Currently, these primitives are not natively supported in
other frameworks like PyTorch. While various subsets of these models and algorithms may be
found in other libraries, Dynamax is a “one stop shop” for state space modeling in JAX.

The API for Dynamax is divided into two parts: a set of core, functionally pure, low-level
inference algorithms, and a high-level, object oriented module for constructing and fitting
probabilistic SSMs. The low-level inference API provides message passing algorithms for several
common types of SSMs. For example, Dynamax provides JAX implementations for:

• Forward-Backward algorithms for discrete-state hidden Markov models (HMMs),
• Kalman filtering and smoothing algorithms for linear Gaussian SSMs,
• Extended and unscented generalized Kalman filtering and smoothing for nonlinear and/or

non-Gaussian SSMs, and
• Parallel message passing routines that leverage GPU or TPU acceleration to perform

message passing in 𝑂(log𝑇 ) time on a parallel machine (Hassan et al., 2021; Särkkä
& Garcıá-Fernández, 2020; Stone, 1975). Note that these routines are not simply
parallelizing over batches of time series, but rather using a parallel algorithm with
sublinear depth or span.

The high-level model API makes it easy to construct, fit, and inspect HMMs and linear Gaussian
SSMs. Finally, the online Dynamax documentation and tutorials provide a wealth of resources
for state space modeling experts and newcomers alike.

Dynamax has supported several publications. The low-level API has been used in machine
learning research (Chang et al., 2023; Lee et al., 2023; Zhao & Linderman, 2023). Special
purpose libraries have been built on top of Dynamax, like the Keypoint-MoSeq library for
modeling animal behavior (Weinreb et al., 2024) and the Structural Time Series in JAX library,
sts-jax (Li & Murphy, 2022). Finally, the Dynamax tutorials are used as reference examples in
a major machine learning textbook (Murphy, 2023).
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