
Dynamax: A Python package for probabilistic state
space modeling with JAX
Scott W. Linderman 1¶, Peter Chang2, Giles Harper-Donnelly3, Aleyna
Kara4, Xinglong Li5, Gerardo Duran-Martin6, and Kevin Murphy7¶

1 Department of Statistics and Wu Tsai Neurosciences Institute, Stanford University, USA 2 CSAIL,
Massachusetts Institute of Technology, USA 3 Cambridge University, England, UK 4 Computer Science
Department, Technical University of Munich Garching, Germany 5 Statistics Department, University of
British Columbia, Canada 6 Queen Mary University of London, England, UK 7 Google DeepMind, USA
¶ Corresponding author

DOI: 10.21105/joss.07069

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @thomaspinder
• @gdalle

Submitted: 24 July 2024
Published: 03 April 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
State space models (SSMs) are fundamental tools for modeling sequential data. They are
broadly used across engineering disciplines like signal processing and control theory, as well as
scientific domains like neuroscience (Vyas et al., 2020), genetics (Durbin et al., 1998), ecology
(Patterson et al., 2008), computational ethology (Weinreb et al., 2024), economics (Jacquier
et al., 2002), and climate science (Ott et al., 2004). Fast and robust tools for state space
modeling are crucial to researchers in all of these application areas.

State space models specify a probability distribution over a sequence of observations, 𝑦1,… 𝑦𝑇,
where 𝑦𝑡 denotes the observation at time 𝑡. The key assumption of an SSM is that the
observations arise from a sequence of latent states, 𝑧1,… , 𝑧𝑇, which evolve according to a
dynamics model (a.k.a., transition model). An SSM may also use inputs (a.k.a., controls or
covariates), 𝑢1,… , 𝑢𝑇, to steer the latent state dynamics and influence the observations. For
example, in a neuroscience application from Vyas et al. (2020), 𝑦𝑡 represents a vector of spike
counts from ∼ 1000 measured neurons, and 𝑧𝑡 is a lower dimensional latent state that changes
slowly over time and captures correlations among the measured neurons. If sensory inputs
to the neural circuit are known, they can be encoded in 𝑢𝑡. In the computational ethology
application of Weinreb et al. (2024), 𝑦𝑡 represents a vector of 3D locations for several key
points on an animal’s body, and 𝑧𝑡 is a discrete behavioral state that specifies how the animal’s
posture changes over time. In both examples, there are two main objectives: First, we aim
to infer the latent states 𝑧𝑡 that best explain the observed data; formally, this is called state
inference. Second, we need to estimate the dynamics that govern how latent states evolve;
formally, this is part of the parameter estimation process. Dynamax provides algorithms for
state inference and parameter estimation in a variety of SSMs.

There are a few key design choices to make when constructing an SSM:

• What is the type of latent state? E.g., is 𝑧𝑡 a continuous or discrete random variable?
• How do the latent states evolve over time? E.g., are the dynamics linear or nonlinear?
• How are the observations distributed? E.g., are they Gaussian, Poisson, etc.?

Some design choices are so common they have their own names. Hidden Markov models
(HMM) are SSMs with discrete latent states, and linear dynamical systems (LDS) are SSMs
with continuous latent states, linear dynamics, and additive Gaussian noise. Dynamax supports
canonical SSMs and allows the user to construct bespoke models as needed, simply by inheriting
from a base class and specifying a few model-specific functions. For example, see the Creating
Custom HMMs tutorial in the Dynamax documentation.

Linderman et al. (2025). Dynamax: A Python package for probabilistic state space modeling with JAX. Journal of Open Source Software, 10(108),
7069. https://doi.org/10.21105/joss.07069.

1

https://orcid.org/0000-0002-3878-9073
https://doi.org/10.21105/joss.07069
https://github.com/openjournals/joss-reviews/issues/7069
https://github.com/probml/dynamax
https://doi.org/10.6084/m9.figshare.28665131
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/thomaspinder
https://github.com/gdalle
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07069


Finally, even for canonical models, there are several algorithms for state inference and parameter
estimation. Dynamax provides robust implementations of several low-level inference algorithms
to suit a variety of applications, allowing users to choose among a host of models and algorithms
for their application. More information about state space models and algorithms for state
inference and parameter estimation can be found in the textbooks by Murphy (2023) and
Särkkä & Svensson (2023).

Statement of need
Dynamax is an open-source Python package for state space modeling. Since it is built with JAX

(Bradbury et al., 2018), it supports just-in-time (JIT) compilation for hardware acceleration on
CPU, GPU, and TPU machines. It also supports automatic differentiation for gradient-based
model learning. While other libraries exist for state space modeling in Python (Corenflos
& Särkkä, 2021; Johnson, 2020; Linderman et al., 2020; Seabold & Perktold, 2010; Weiss
et al., 2024) and Julia (Dalle, 2024), Dynamax provides a diverse combination of low-level
inference algorithms and high-level modeling objects that can support a wide range of research
applications in JAX. Additionally, Dynamax implements parallel message passing algorithms
that leverage the associative scan (a.k.a., parallel scan) primitive in JAX to take full advantage
of modern hardware accelerators. Currently, these primitives are not natively supported in
other frameworks like PyTorch. While various subsets of these models and algorithms may be
found in other libraries, Dynamax is a “one stop shop” for state space modeling in JAX.

The API for Dynamax is divided into two parts: a set of core, functionally pure, low-level
inference algorithms, and a high-level, object oriented module for constructing and fitting
probabilistic SSMs. The low-level inference API provides message passing algorithms for several
common types of SSMs. For example, Dynamax provides JAX implementations for:

• Forward-Backward algorithms for discrete-state hidden Markov models (HMMs),
• Kalman filtering and smoothing algorithms for linear Gaussian SSMs,
• Extended and unscented generalized Kalman filtering and smoothing for nonlinear and/or

non-Gaussian SSMs, and
• Parallel message passing routines that leverage GPU or TPU acceleration to perform

message passing in 𝑂(log𝑇 ) time on a parallel machine (Hassan et al., 2021; Särkkä
& Garcıá-Fernández, 2020; Stone, 1975). Note that these routines are not simply
parallelizing over batches of time series, but rather using a parallel algorithm with
sublinear depth or span.

The high-level model API makes it easy to construct, fit, and inspect HMMs and linear Gaussian
SSMs. Finally, the online Dynamax documentation and tutorials provide a wealth of resources
for state space modeling experts and newcomers alike.

Dynamax has supported several publications. The low-level API has been used in machine
learning research (Chang et al., 2023; Lee et al., 2023; Zhao & Linderman, 2023). Special
purpose libraries have been built on top of Dynamax, like the Keypoint-MoSeq library for
modeling animal behavior (Weinreb et al., 2024) and the Structural Time Series in JAX library,
sts-jax (Li & Murphy, 2022). Finally, the Dynamax tutorials are used as reference examples in
a major machine learning textbook (Murphy, 2023).

Acknowledgements
A significant portion of this library was developed while S.W.L. was a Visiting Faculty Researcher
at Google and P.C., G.H.D., A.K., and X.L. were Google Summer of Code participants.

Linderman et al. (2025). Dynamax: A Python package for probabilistic state space modeling with JAX. Journal of Open Source Software, 10(108),
7069. https://doi.org/10.21105/joss.07069.

2

https://doi.org/10.21105/joss.07069


References
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,

Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/google/
jax

Chang, P. G., Durán-Martín, G., Shestopaloff, A., Jones, M., & Murphy, K. P. (2023). Low-
rank extended Kalman filtering for online learning of neural networks from streaming
data. In S. Chandar, R. Pascanu, H. Sedghi, & D. Precup (Eds.), Proceedings of the
2nd conference on lifelong learning agents (Vol. 232, pp. 1025–1071). PMLR. https:
//doi.org/10.48550/arXiv.2305.19535

Corenflos, A., & Särkkä, S. (2021). Code companion for Bayesian Filtering and Smoothing
(Version 1.0). https://github.com/EEA-sensors/Bayesian-Filtering-and-Smoothing

Dalle, G. (2024). HiddenMarkovModels.jl: Generic, fast and reliable state space modeling.
Journal of Open Source Software, 9(96), 6436. https://doi.org/10.21105/joss.06436

Durbin, R., Eddy, S. R., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis: Prob-
abilistic models of proteins and nucleic acids. https://doi.org/10.1017/cbo9780511790492

Hassan, S. S., Särkkä, S., & Garcıá-Fernández, Á. F. (2021). Temporal parallelization of
inference in hidden Markov models. IEEE Transactions on Signal Processing, 69, 4875–4887.
https://doi.org/10.1109/TSP.2021.3103338

Jacquier, E., Polson, N. G., & Rossi, P. E. (2002). Bayesian analysis of stochastic volatility
models. Journal of Business & Economic Statistics, 20(1), 69–87. https://doi.org/10.
1198/073500102753410408

Johnson, M. J. (2020). PyHSMM: Bayesian inference in HSMMs and HMMs (Version 0.0.0).
https://github.com/mattjj/pyhsmm

Lee, H. D., Warrington, A., Glaser, J., & Linderman, S. (2023). Switching autoregressive low-
rank tensor models. Advances in Neural Information Processing Systems, 36, 57976–58010.
https://doi.org/10.48550/arXiv.2306.03291

Li, X., & Murphy, K. (2022). Structural time series (STS) in JAX. https://github.com/
probml/sts-jax

Linderman, S., Antin, B., Zoltowski, D., & Glaser, J. (2020). SSM: Bayesian Learning and
Inference for State Space Models (Version 0.0.1). https://github.com/lindermanlab/ssm

Murphy, K. P. (2023). Probabilistic machine learning: Advanced topics. MIT Press. http:
//probml.github.io/book2

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza, M., Kalnay,
E., Patil, D., & Yorke, J. A. (2004). A local ensemble Kalman filter for atmospheric
data assimilation. Tellus A: Dynamic Meteorology and Oceanography, 56(5), 415–428.
https://doi.org/10.3402/tellusa.v56i5.14462

Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O., & Matthiopoulos, J. (2008).
State-space models of individual animal movement. Trends in Ecology & Evolution, 23(2),
87–94. https://doi.org/10.1016/j.tree.2007.10.009

Särkkä, S., & Garcıá-Fernández, Á. F. (2020). Temporal parallelization of Bayesian smoothers.
IEEE Transactions on Automatic Control, 66(1), 299–306. https://doi.org/10.1109/TAC.
2020.2976316

Särkkä, S., & Svensson, L. (2023). Bayesian filtering and smoothing (Vol. 17). Cambridge
University Press. https://doi.org/10.1017/CBO9781139344203

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical mod-

Linderman et al. (2025). Dynamax: A Python package for probabilistic state space modeling with JAX. Journal of Open Source Software, 10(108),
7069. https://doi.org/10.21105/joss.07069.

3

http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.48550/arXiv.2305.19535
https://doi.org/10.48550/arXiv.2305.19535
https://github.com/EEA-sensors/Bayesian-Filtering-and-Smoothing
https://doi.org/10.21105/joss.06436
https://doi.org/10.1017/cbo9780511790492
https://doi.org/10.1109/TSP.2021.3103338
https://doi.org/10.1198/073500102753410408
https://doi.org/10.1198/073500102753410408
https://github.com/mattjj/pyhsmm
https://doi.org/10.48550/arXiv.2306.03291
https://github.com/probml/sts-jax
https://github.com/probml/sts-jax
https://github.com/lindermanlab/ssm
http://probml.github.io/book2
http://probml.github.io/book2
https://doi.org/10.3402/tellusa.v56i5.14462
https://doi.org/10.1016/j.tree.2007.10.009
https://doi.org/10.1109/TAC.2020.2976316
https://doi.org/10.1109/TAC.2020.2976316
https://doi.org/10.1017/CBO9781139344203
https://doi.org/10.21105/joss.07069


eling with python. 9th Python in Science Conference. https://doi.org/10.25080/
majora-92bf1922-011

Stone, H. S. (1975). Parallel tridiagonal equation solvers. ACM Transactions on Mathematical
Software (TOMS), 1(4), 289–307. https://doi.org/10.1145/355656.355657

Vyas, S., Golub, M. D., Sussillo, D., & Shenoy, K. V. (2020). Computation through neural
population dynamics. Annual Review of Neuroscience, 43(1), 249–275. https://doi.org/10.
1146/annurev-neuro-092619-094115

Weinreb, C., Pearl, J. E., Lin, S., Osman, M. A. M., Zhang, L., Annapragada, S., Conlin,
E., Hoffmann, R., Makowska, S., Gillis, W. F., Jay, M., Ye, S., Mathis, A., Mathis, M.
W., Pereira, T., Linderman, S. W., & Datta, S. R. (2024). Keypoint-MoSeq: Parsing
behavior by linking point tracking to pose dynamics. Nature Methods, 21(7), 1329–1339.
https://doi.org/10.1038/s41592-024-02318-2

Weiss, R., Du, S., Grobler, J., Cournapeau, D., Pedregosa, F., Varoquaux, G., Mueller, A.,
Thirion, B., Nouri, D., Louppe, G., Vanderplas, J., Benediktsson, J., Buitinck, L., Korobov,
M., McGibbon, R., Lattarini, S., Niculae, V., Gramfort, A., Lebedev, S., … Rockhill, A.
(2024). Hmmlearn (Version 0.3.2). https://github.com/hmmlearn/hmmlearn

Zhao, Y., & Linderman, S. (2023). Revisiting structured variational autoencoders. International
Conference on Machine Learning, 42046–42057. https://doi.org/10.48550/arXiv.2305.
16543

Linderman et al. (2025). Dynamax: A Python package for probabilistic state space modeling with JAX. Journal of Open Source Software, 10(108),
7069. https://doi.org/10.21105/joss.07069.

4

https://doi.org/10.25080/majora-92bf1922-011
https://doi.org/10.25080/majora-92bf1922-011
https://doi.org/10.1145/355656.355657
https://doi.org/10.1146/annurev-neuro-092619-094115
https://doi.org/10.1146/annurev-neuro-092619-094115
https://doi.org/10.1038/s41592-024-02318-2
https://github.com/hmmlearn/hmmlearn
https://doi.org/10.48550/arXiv.2305.16543
https://doi.org/10.48550/arXiv.2305.16543
https://doi.org/10.21105/joss.07069

	Summary
	Statement of need
	Acknowledgements
	References

