SS

The Journal of Open Source Software

PyStack3D: A python package for fast image stack
correction

Patrick Quéméré ®! and Thomas David ©?

1 Univ. Grenoble Alpes, CEA, Leti, Grenoble, France 2 Univ. Grenoble Alpes, CEA, LITEN, Grenoble,

France
DOI: 10.21105/joss.07079
Software
» Review & Summary
= Repository 7
= Archive 7 Three-dimensional reconstruction from 2D image stacks is a crucial technique in various

scientific domains. For instance, acquisition techniques like Focused lon Beam Scanning
Electron Microscopy (FIB-SEM) leverage this approach to visualize complex structures at the
nanoscale. However, creating a “clean” 3D stack often requires image corrections to remove
artifacts and inconsistencies, particularly for volume segmentation, a crucial process for 3D
quantitative data analysis.

Editor: Marcel Stimberg &
Reviewers:

= @kasasxav
Here we present PyStack3D, a Python open-source library, that aims at performing several

image ‘cleaning’ tasks (Figure 1) in the most integrated and efficient manner possible.

= @xiuliren

= @sklumpe

Submitted: 18 June 2024 a)
Published: 23 September 2024

contrast loss)
(intensity rescaling)

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

large-scale effects

extra area
. (background removal)
(cropping)
curtaining R
(destriping) iad
AY
7o non uniformity

misalignment (resampling)

(registration)

Figure 1: a) Synthetic stack with different types of defects and related processing. b) Corrected stack
with PyStack3D. c) Ground truth.

Statement of need

Accurate 3D reconstruction is crucial for extracting detailed features across various imaging
techniques. In life sciences, for instance, this includes identifying cellular organelles, under-
standing tissue architecture or studying protein localization. In energy materials, precise
imaging is necessary for analyzing porous structures, mapping catalyst particles or assessing
battery electrode interfaces. Various imaging methods, such as confocal microscopy, light
sheet microscopy, and electron tomography, often introduce distortions or misalignments due
to factors like optical aberrations, sample movement or inconsistent illumination. These issues

Quéméré, & David. (2024). PyStack3D: A python package for fast image stack correction. Journal of Open Source Software, 9(101), 7079. 1
https://doi.org/10.21105/joss.07079.

https://orcid.org/0009-0008-6936-1249
https://orcid.org/0000-0002-6796-220X
https://doi.org/10.21105/joss.07079
https://github.com/openjournals/joss-reviews/issues/7079
https://github.com/CEA-MetroCarac/pystack3d
https://doi.org/10.5281/zenodo.13827928
https://marcel.stimberg.info/
https://orcid.org/0000-0002-2648-4790
https://github.com/kasasxav
https://github.com/xiuliren
https://github.com/sklumpe
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07079

The Journal of Open Source Software

become even more pronounced with FIB-SEM (Héflich et al., 2023), where artifacts from the
milling process and variations in sample preparation can further complicate the 3D stack.

Effective correction of these distortions is essential for reliable segmentation and accurate
feature extraction (Osenberg et al., 2023; Spehner et al., 2020).

Statement of field

Certainly, one of the most widely used open-source software for performing image stack
corrections is the Fiji software (Schindelin et al., 2012), a distribution of ImageJ (Schneider
et al., 2012). Written in Java, this software offers numerous macros for the analysis and
processing of 2D and 3D images. Unfortunately, not all the macros needed to perform the
stack corrections exist, and the existing macros do not all support multiprocessing, which can
lead to processing times of several hours for stacks composed of thousands of images (see
Appendix).

As an alternative, codes written in Python like Hifiem (Kreinin et al., 2023), PolishEM
(Fernandez et al., 2020) or Napari (Sofroniew et al., 2024) have been developed in recent
years to achieve processing times of just a few minutes thanks to multiprocessing capabilities.
PyStack3D, whose project started in 2020, is part of this trend. Designed to be executed as a
workflow, PyStack3D aims to enable users to easily manage the automation of such workflows.
With the quickly obtained results, users can easily readjust the parameters, and restart the
processing if needed.

Implementation

In PyStack3D, to reduce the memory footprint, images (called “slices”) are loaded and processed
one by one either on a single processor or across multiple processors, depending on the user's
machine capabilities.

The PyStack3D workflow is made up of multiple processing steps, specified in a . toml parameter
file, and executed in the order desired by the user.

The processing steps currently offered by PyStack3D are:
= cropping to reduce the image field of view to the user's ROl (Region Of Interest)

= background removal to reduce, from 2D or 3D polynomial approximations, large-scaled
brightness and contrast variations issued for instance from shadowing or charging effects
in FIB-SEM images acquisition

= intensity rescaling to homogenize the ‘gray’ intensity distribution between successive slices
and smooth out abrupt intensity jumps that can occur due to, for instance, variations in
the beam source.

= registration to correct the image misalignment due to shifting, drift, rotation, .. during
the image acquisition (based on the PyStackReg package, Thevenaz et al., 1998)

= destriping to minimize artefacts like stripes or curtain effects typically found in FIB-SEM
images, based on the PyVSNR package (Fehrenbach et al., 2012; Pavy & Quéméré, 2024),
or wavelet decomposition (Miinch et al., 2009)

= resampling to correct non-uniform spatial inter-slice distances and enable correct 3D
volume reconstructions

= final cropping to eliminate artefacts potentially produced near the edges during the image
processing or to select another ROI at the end.

Quéméré, & David. (2024). PyStack3D: A python package for fast image stack correction. Journal of Open Source Software, 9(101), 7079. 2
https://doi.org/10.21105/joss.07079.

https://doi.org/10.21105/joss.07079

SS

The Journal of Open Source Software

At the end of each process step, PyStack3D provides statistical profiles like evolution of
minimum, maximum, and mean values for each slice, and relevant visualizations specific to
the processing performed. In addition, 3D and 2D plots (cut-planes) akin to those shown in
Figure 1 and Figure 2, respectively, can be produced.

Note that the processing can be carried out on multiple channels corresponding to images
issued from multiple detectors, typically useful in the context of FIB-SEM input data. Moreover,
when working with a Zeiss microscope, some metadata issued from the equipment can be
automatically incorporated in the input .toml parameter file.

In conclusion, Pystack3D has been designed to evolve over time and accommodate new process
steps. Its code structure has been crafted to seamlessly integrate new functionalities, leveraging
multiprocessing capabilities.

Acknowledgements

This work, carried out on the CEA-Platform for Nanocharacterisation (PFNC), was supported
by the “Recherche Technologique de Base' program of the French National Research Agency
(ANR).

cropping bkg removal destriping

250 250

200 200
y 150 150
100 100

50 50

150 150

| 100 100

50 50

0 100 200 o] 100 200 o

100 200

registration

resampling

250 250 250

200 200 200

> 150 { 150 1o

100 100 100

50 50 50

250

150 150 200

N 100 100 150

50 50 100

50

Figure 2: Cut-planes related to the different process steps applied to the stack presented in the Figure 1.

Quéméré, & David. (2024). PyStack3D: A python package for fast image stack correction. Journal of Open Source Software, 9(101), 7079. 3
https://doi.org/10.21105/joss.07079.

https://doi.org/10.21105/joss.07079

The Journal of Open Source Software

Appendix

Processing time for a stack composed of 2000 slices (from ex_real_stack_perf.py)

Process step Fiji (s) PyStack3D (s)
cropping 750 30
bkg_removal (2D / 3D) 250 / - 70 / 40%*
destriping 22400 700%*
registration 5400 25
intensity_rescaling - 25
resampling - 10

image size: 4224 x 4224 before cropping / 2000 x 2000 after cropping.
Machine: Linux - 32 CPUs Intel(R) Xeon(R) Platinum 8362 CPU @ 2.80GHz.

(*) in 3D the polynomial coefficients are calculated only once, unlike in 2D, where the
coefficients are recalculated for each slice.

(**) 120s with a GPU Nvidia A-100.

References

Fehrenbach, J., Weiss, W., & Lorenzo, C. (2012). Variational algorithms to remove stationary
noise. Application to microscopy imaging. IEEE Image Processing, 21(10), 4420-4430.
https://doi.org/10.1109/TIP.2012.2206037

Fernandez, J.-J., Torres, T. E., Martin-Solana, E., Goya, G. F., & Fernandez-Fernandez, M.-R.
(2020). PolishEM: image enhancement in FIB-SEM. Bioinformatics, 36(12), 3947-3948.
https://doi.org/10.1093/bioinformatics/btaa218

Hoéflich, K., Hobler, G., Allen, F. I., Wirtz, T., Rius, G., McElwee-White, L., Krasheninnikov,
A. V., Schmidt, M., Utke, I., Klingner, N., & others. (2023). Roadmap for focused ion
beam technologies. Applied Physics Reviews, 10(4). https://doi.org/10.1063/5.0162597

Kreinin, Y., Gunn, P., Chklovskii, D., & Wu, J. (2023). High-fidelity image restoration of large
3D electron microscopy volume. bioRxiv. https://doi.org/10.1101/2023.09.14.557785

Minch, B., Trtik, P., Marone, F., & Stampanoni, M. (2009). Stripe and ring artifact
removal with combined wavelet — fourier filtering. Optics Express, 17(10), 8567—-8591.
https://doi.org/10.1364/0OE.17.008567

Osenberg, M., Hilger, A., Neumann, M., Wagner, A., Bohn, N., Binder, J. R., Schmidt, V.,
Banhart, J., & Manke, I. (2023). Classification of FIB/SEM-tomography images for highly
porous multiphase materials using random forest classifiers. Journal of Power Sources, 570,
233030. https://doi.org/10.1016/j.jpowsour.2023.233030

Pavy, K., & Quéméré, P. (2024). PyVSNR 2.0.0 (Version 2.0.0). Zenodo. https://doi.org/10.
5281/zenodo.10623640

Schindelin, J., Arganda-Carreras, |., & Frise, E. (2012). Fiji: An open-source platform for
biological-image analysis. Nature Methods, 9, 676—682. https://doi.org/10.1038 /nmeth.
2019

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of
image analysis. Nature Methods, 9(7), 671-675. https://doi.org/10.1038 /nmeth.2089

Quéméré, & David. (2024). PyStack3D: A python package for fast image stack correction. Journal of Open Source Software, 9(101), 7079. 4
https://doi.org/10.21105/joss.07079.

https://github.com/CEA-MetroCarac/pystack3d/blob/main/examples/ex_real_stack_perf.py
https://doi.org/10.1109/TIP.2012.2206037
https://doi.org/10.1093/bioinformatics/btaa218
https://doi.org/10.1063/5.0162597
https://doi.org/10.1101/2023.09.14.557785
https://doi.org/10.1364/OE.17.008567
https://doi.org/10.1016/j.jpowsour.2023.233030
https://doi.org/10.5281/zenodo.10623640
https://doi.org/10.5281/zenodo.10623640
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.21105/joss.07079

The Journal of Open Source Software

Sofroniew, N., Lambert, T., Bokota, G., Nunez-Iglesias, J., Sobolewski, P., Sweet, A., Gaifas,
L., Evans, K., Burt, A., & Doncila Pop, D. (2024). napari: a multi-dimensional image
viewer for Python (Version v0.5.2). Zenodo. https://doi.org/10.5281/zenodo.13309520

Spehner, D., Steyer, A. M., Bertinetti, L., Orlov, |., Benoit, L., Pernet-Gallay, K., Schertel,
A., & Schultz, P. (2020). Cryo-FIB-SEM as a promising tool for localizing proteins in 3D.
Journal of Structural Biology, 211(1), 107528. https://doi.org/10.1016/].jsb.2020.107528

Thevenaz, P., Ruttiman, U. E., & Unser, M. (1998). A pyramid approach to subpixel
registration based on intensity. /EEE Transactions on Image Processing, 7(1), 27-41.
https://doi.org/10.1109/83.650848

Quéméré, & David. (2024). PyStack3D: A python package for fast image stack correction. Journal of Open Source Software, 9(101), 7079. 5
https://doi.org/10.21105/joss.07079.

https://doi.org/10.5281/zenodo.13309520
https://doi.org/10.1016/j.jsb.2020.107528
https://doi.org/10.1109/83.650848
https://doi.org/10.21105/joss.07079

	Summary
	Statement of need
	Statement of field
	Implementation
	Acknowledgements
	Appendix
	References

