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» Review & Summary
= Repository 7
= Archive 7 Three-dimensional reconstruction from 2D image stacks is a crucial technique in various

scientific domains. For instance, acquisition techniques like Focused lon Beam Scanning
Electron Microscopy (FIB-SEM) leverage this approach to visualize complex structures at the
nanoscale. However, creating a “clean” 3D stack often requires image corrections to remove
artifacts and inconsistencies, particularly for volume segmentation, a crucial process for 3D
quantitative data analysis.
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Here we present PyStack3D, a Python open-source library, that aims at performing several

image ‘cleaning’ tasks (Figure 1) in the most integrated and efficient manner possible.
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Figure 1: a) Synthetic stack with different types of defects and related processing. b) Corrected stack
with PyStack3D. c) Ground truth.

Statement of need

Accurate 3D reconstruction is crucial for extracting detailed features across various imaging
techniques. In life sciences, for instance, this includes identifying cellular organelles, under-
standing tissue architecture or studying protein localization. In energy materials, precise
imaging is necessary for analyzing porous structures, mapping catalyst particles or assessing
battery electrode interfaces. Various imaging methods, such as confocal microscopy, light
sheet microscopy, and electron tomography, often introduce distortions or misalignments due
to factors like optical aberrations, sample movement or inconsistent illumination. These issues
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become even more pronounced with FIB-SEM (Héflich et al., 2023), where artifacts from the
milling process and variations in sample preparation can further complicate the 3D stack.

Effective correction of these distortions is essential for reliable segmentation and accurate
feature extraction (Osenberg et al., 2023; Spehner et al., 2020).

Statement of field

Certainly, one of the most widely used open-source software for performing image stack
corrections is the Fiji software (Schindelin et al., 2012), a distribution of ImageJ (Schneider
et al., 2012). Written in Java, this software offers numerous macros for the analysis and
processing of 2D and 3D images. Unfortunately, not all the macros needed to perform the
stack corrections exist, and the existing macros do not all support multiprocessing, which can
lead to processing times of several hours for stacks composed of thousands of images (see
Appendix).

As an alternative, codes written in Python like Hifiem (Kreinin et al., 2023), PolishEM
(Fernandez et al., 2020) or Napari (Sofroniew et al., 2024) have been developed in recent
years to achieve processing times of just a few minutes thanks to multiprocessing capabilities.
PyStack3D, whose project started in 2020, is part of this trend. Designed to be executed as a
workflow, PyStack3D aims to enable users to easily manage the automation of such workflows.
With the quickly obtained results, users can easily readjust the parameters, and restart the
processing if needed.

Implementation

In PyStack3D, to reduce the memory footprint, images (called “slices”) are loaded and processed
one by one either on a single processor or across multiple processors, depending on the user's
machine capabilities.

The PyStack3D workflow is made up of multiple processing steps, specified in a . toml parameter
file, and executed in the order desired by the user.

The processing steps currently offered by PyStack3D are:
= cropping to reduce the image field of view to the user's ROl (Region Of Interest)

= background removal to reduce, from 2D or 3D polynomial approximations, large-scaled
brightness and contrast variations issued for instance from shadowing or charging effects
in FIB-SEM images acquisition

= intensity rescaling to homogenize the ‘gray’ intensity distribution between successive slices
and smooth out abrupt intensity jumps that can occur due to, for instance, variations in
the beam source.

= registration to correct the image misalignment due to shifting, drift, rotation, .. during
the image acquisition (based on the PyStackReg package, Thevenaz et al., 1998)

= destriping to minimize artefacts like stripes or curtain effects typically found in FIB-SEM
images, based on the PyVSNR package (Fehrenbach et al., 2012; Pavy & Quéméré, 2024),
or wavelet decomposition (Miinch et al., 2009)

= resampling to correct non-uniform spatial inter-slice distances and enable correct 3D
volume reconstructions

= final cropping to eliminate artefacts potentially produced near the edges during the image
processing or to select another ROI at the end.
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At the end of each process step, PyStack3D provides statistical profiles like evolution of
minimum, maximum, and mean values for each slice, and relevant visualizations specific to
the processing performed. In addition, 3D and 2D plots (cut-planes) akin to those shown in
Figure 1 and Figure 2, respectively, can be produced.

Note that the processing can be carried out on multiple channels corresponding to images
issued from multiple detectors, typically useful in the context of FIB-SEM input data. Moreover,
when working with a Zeiss microscope, some metadata issued from the equipment can be
automatically incorporated in the input .toml parameter file.

In conclusion, Pystack3D has been designed to evolve over time and accommodate new process
steps. Its code structure has been crafted to seamlessly integrate new functionalities, leveraging
multiprocessing capabilities.

Acknowledgements

This work, carried out on the CEA-Platform for Nanocharacterisation (PFNC), was supported
by the “Recherche Technologique de Base' program of the French National Research Agency
(ANR).

cropping bkg removal destriping

250 250

200 200
y 150 150
100 100

50 50

150 150

| 100 100

50 50

0 100 200 o] 100 200 o

100 200

registration

resampling

250 250 250

200 200 200

> 150 { 150 1o

100 100 100

50 50 50

250

150 150 200

N 100 100 150

50 50 100

50

Figure 2: Cut-planes related to the different process steps applied to the stack presented in the Figure 1.
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Appendix

Processing time for a stack composed of 2000 slices (from ex_real_stack_perf.py)

Process step Fiji (s) PyStack3D (s)
cropping 750 30
bkg_removal (2D / 3D) 250 / - 70 / 40%*
destriping 22400 700%*
registration 5400 25
intensity_rescaling - 25
resampling - 10

image size: 4224 x 4224 before cropping / 2000 x 2000 after cropping.
Machine: Linux - 32 CPUs Intel(R) Xeon(R) Platinum 8362 CPU @ 2.80GHz.

(*) in 3D the polynomial coefficients are calculated only once, unlike in 2D, where the
coefficients are recalculated for each slice.

(**) 120s with a GPU Nvidia A-100.
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