
MocoExtendProblem: Interface Between OpenSim and
MATLAB for Rapidly Developing Direct Collocation
Goals in Moco
Aravind Sundararajan 1¶, Varun Joshi 2, Brian R. Umberger 2, and
Matthew C. O’Neill 1

1 Department of Anatomy, Midwestern University, Glendale Arizona, United States of America 2 School
of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America ¶ Corresponding
author

DOI: 10.21105/joss.07110

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @0todd0000
• @aasadi1
• @dgupta7

Submitted: 04 June 2024
Published: 28 April 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
MocoExtendProblem (MEP) is a framework to rapidly develop novel goals for biomechanical
optimal control problems using OpenSim Moco (Dembia et al., 2020) and MATLAB (The
MathWorks, Inc., Natick, MA, USA). MEP features several templates for testing and prototyping
novel MocoGoals as well as a build tool to create a MEX function using OpenSim’s API for
MATLAB in lieu of rebuilding OpenSim from source or building a plugin and generating an
.omoco file from C++ to load the problem into MATLAB. Instead, users structure and design
custom goals in C++, build them with the provided tool, and call custom goals from within
MATLAB scripts.

This repository features:

• A build.m script that compiles goals in the custom_goals directory and procedurally
constructs the C++/MATLAB class implementations and compiles the MEX interface.

• Compatibility tested with OpenSim 4.2-4.5.
– Support for OpenSim versions 4.2-4.4 require unique considerations to custom goal

development and build pipeline since Booleans for division by duration, distance
and mass were migrated to the abstract MocoGoal.

• The ability to include MEP as a submodule, build, and use valid custom goals.
• Three example custom goals in the custom_goals and custom_goals_compat directories.

Statement of need
OpenSim is an open-source software platform for modeling musculoskeletal structures and
creating dynamic simulations of movement Seth et al. (2018). OpenSim enables researchers
and clinicians to investigate how biological and non-biological structures respond to different
loads, postures and activities in both static and dynamic situations. OpenSim has been used to
study a wide range of biomechanical problems, such as the mechanics of walking and running
(e.g. Falisse et al., 2019), the impact of injury or disease on movement (e.g. Johnson et al.,
2022), and the effectiveness of rehabilitation exercises (e.g. Spomer et al., 2023).

While OpenSim originally featured several single-shooting methods like Computed Muscle
Control and static optimization to solve for kinematics, kinetics and controls, OpenSim now
includes Moco (Dembia et al., 2020) which employs an optimization paradigm called direct
collocation for solving curve-fitting problems that range from solving for muscle forces, to
tracking experimental data, and fully predictive simulations that solve the optimal control
problem (OCP) subject to some predefined goals and constraints. Direct collocation is a

Sundararajan et al. (2025). MocoExtendProblem: Interface Between OpenSim and MATLAB for Rapidly Developing Direct Collocation Goals in
Moco. Journal of Open Source Software, 10(108), 7110. https://doi.org/10.21105/joss.07110.

1

https://orcid.org/0009-0001-6775-6596
https://orcid.org/0000-0003-3737-2302
https://orcid.org/0000-0002-5780-2405
https://orcid.org/0000-0001-9614-7813
https://doi.org/10.21105/joss.07110
https://github.com/openjournals/joss-reviews/issues/7110
https://github.com/Aravind-Sundararajan/MocoExtendProblem
https://doi.org/10.5281/zenodo.15223237
https://kevinmoerman.org
https://orcid.org/0000-0003-3768-4269
https://github.com/0todd0000
https://github.com/aasadi1
https://github.com/dgupta7
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07110


numerical optimal control method (Kelly, 2017) that is computationally efficient compared to
single-shooting algorithms and is used extensively in computational approaches to understanding
biological movement. While direct collocation is powerful, OpenSim Moco only provides a
small predefined set of optimization goals which can be modified easily using OpenSim’s
MATLAB API; However, more sophisticated goals such as the 3 stability criteria explored in
the showcases require understanding the C++ API and ability to build a custom plugin or
building OpenSim from source. It can be daunting for many users to develop custom goals
without experience in building software written in C++. We developed MEP so Moco users
without experience in compiling C++ can still write and test custom goals.

MEP was developed using MATLAB (v. 2022a), which is a multimodal software platform
that is commonly used by biomechanics researchers. Typically, OpenSim interfaces are
generated automatically with SWIG (Simplified Wrapper and Interface Generator), as opposed
to developing an interface with MATLAB classes and MEX (MATLAB Executable), which can
be challenging for even experienced biomechanists because of the complexity of developing the
MATLAB-OpenSim API plugin and the need to develop a C++ interface for this plugin. MEP

only requires that CMake and msbuild from Visual Studio (VS) 2019 or higher as well as the
C++ desktop development workload for VS to use MATLAB’s MEX compiler with VS.

With MEP, OpenSim 4.5 users can simply run build.m to compile MocoGoals placed in the
custom_goals directory, or in the custom_goals_compat directory for OpenSim versions 4.2-
4.4. build.m will procedurally construct both extend_problem.m and ExtendProblem.cpp

by parsing the header files of the discovered goals within the custom_goals directory. Both
ExtendProblem.cpp and extend_problem.m generate bindings to instantiate custom goals
placed in the custom_goals directory. Custom goals can be compiled with Visual Studio
2019 or higher and then MATLAB’s MEX compiler is used to compile ExtendProblem.
ExtendProblem.cpp leverages the C++ library mexplus (Yamaguchi, 2018) to gain access to
MEX entry points through C++ macros.

Sundararajan et al. (2025). MocoExtendProblem: Interface Between OpenSim and MATLAB for Rapidly Developing Direct Collocation Goals in
Moco. Journal of Open Source Software, 10(108), 7110. https://doi.org/10.21105/joss.07110.

2

https://doi.org/10.21105/joss.07110


Figure 1: MEP framework. The researcher runs the build.m script (orange) that subsequently calls
methods in the utils folder (red) which are tasked with reading the custom_goals folder (green) and
procedurally construct the mex and the interface class that calls the mex (blue). Each custom goal
(green) is handled as its own compiled plugin.

To create a new goal with MEP:

1. OpenSim 4.5+ users should copy a goal folder in the custom_goals directory while
4.2-4.4 users should copy a goal folder in custom_goals_compat to serve as a template.

2. Replace mentions of the original goal name to that of your new custom goal name in
each of the 5 files and file names, being careful to also modify the include guards in the
dll and register types header files.

3. Reimplement constructProperties(), initializeOnModelImpl(), calcIntegrandImpl(), cal-
cGoalImpl() such that they describe your custom goal.

To incorporate extend_problem goals into an existing MATLAB script, a C-style pointer to
the instantiated MocoProblem is passed as a constructor argument to the extend_problem.m

class that wraps the MEP MEX. Class methods of extend_problem.m (Figure 1; blue) are then
used to add custom goals to the MocoProblem broadly using the following syntax:

cptr = uint64(problem.getCPtr(problem)); % c-style pointer to instantiated MocoProblem

ep = extend_problem(cptr); % instantiate procedurally-generated ExtendProblem class

ep.addMocoCustomGoal('custom_goal',weight,power,divide_by_distance); %add custom goal to the MocoProblem

This paradigm has implications for OpenSim and MATLAB developers beyond the scope of just
incorporating novel MocoGoals; these same strategies can be used to extend other OpenSim
classes and easily incorporate them into existing MATLAB-OpenSim scripts. We have posted
all tools, instructions and simulation results related to this project on GitHub and SimTK.org.

Sundararajan et al. (2025). MocoExtendProblem: Interface Between OpenSim and MATLAB for Rapidly Developing Direct Collocation Goals in
Moco. Journal of Open Source Software, 10(108), 7110. https://doi.org/10.21105/joss.07110.

3

https://github.com/Aravind-Sundararajan/MocoExtendProblem
https://simtk.org/projects/moco-ep
https://doi.org/10.21105/joss.07110


Requirements
• install cmake (tested with 3.23.3) and Visual Studio 2019+ with the C++ desktop

development workload.
• install MATLAB (tested with 2022a/b), and configure MEX one time with mex -setup

C++ to use VS.
• Download and install OpenSim from SimTK and follow the documentation for setting

up OpenSim’s MATLAB scripting environment.

Showcases
To demonstrate the utility of this framework, we generated a two-dimensional (2-D) walking
simulation using the MATLAB-OpenSim API (Denton & Umberger, 2023). The base code
uses the built-in MocoControlEffortGoal and MocoAverageSpeedGoal to generate tracking and
predictive simulations of minimum effort walking at an average speed of 1.3 𝑚𝑠−1. Additionally,
each objective function includes implicit acceleration which minimizes the integral of squared
continuous joint acceleration variables, and an auxiliary derivative term that minimizes the
integral of squared derivative continuous variables such as fiber velocity to ensure smooth
trajectories (𝐴𝐶𝐶𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔).

Since Moco lacks built-in gait stability goals, we developed three stability goals using MEP

build.m to create an ExtendProblem class that adds these to an existing MocoProblem
(Figure 1; blue). The first is a base of support (Equation 1 BOS) criterion in which the
whole-body center of mass (COM) is optimized to lay between the two hindfeet COMs
projected to the ground reference frame in the transverse plane. The second is a zero-moment-
point goal (Equation 2 ZMP) where the whole-body COM tracks the computed zero-tilting
moment location in the transverse plane. The third is a marker acceleration minimization goal
(Equation 3 𝐴𝐶𝐶𝑚𝑎𝑟𝑘𝑒𝑟) that minimizes the explicit accelerations of a marker placed on the
head (marker location is arbitrary and can be set by the user).

MEP’s build.m was used to generate an ExtendProblem class that adds these new stability cost
terms:

𝐽𝐵𝑂𝑆 = 𝑊1𝐸𝐹𝐹 2 +𝑊2𝐴𝐶𝐶𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 +𝑊3𝐵𝑂𝑆 (1)

𝐽𝑍𝑀𝑃 = 𝑊1𝐸𝐹𝐹 2 +𝑊2𝐴𝐶𝐶𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 +𝑊3𝑍𝑀𝑃 (2)

𝐽𝐴𝐶𝐶 = 𝑊1𝐸𝐹𝐹 2 +𝑊2𝐴𝐶𝐶𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 +𝑊3𝐴𝐶𝐶𝑚𝑎𝑟𝑘𝑒𝑟 (3)

The results of each multi-objective predictive simulation, in which the stability criterion was
compiled using MEP, is shown against the results from a tracking simulation (Figure 2; Table 1)
that closely-matched experimental data (Denton & Umberger, 2023). As the purpose was
to demonstrate the utility of MEP, we did not tune the stability term weights to match the
tracking result as closely as possible.

Sundararajan et al. (2025). MocoExtendProblem: Interface Between OpenSim and MATLAB for Rapidly Developing Direct Collocation Goals in
Moco. Journal of Open Source Software, 10(108), 7110. https://doi.org/10.21105/joss.07110.

4

https://cmake.org/download/
https://simtk.org
https://opensimconfluence.atlassian.net/wiki/spaces/OpenSim/pages/53089380/Scripting+with+Matlab
https://doi.org/10.21105/joss.07110


Figure 2: Sagittal plane hip, knee and ankle angles (a-c), vertical and A-P ground reaction forces (d-e),
the 11 degree-of-freedom, 18 muscle sagittal plane human walking model used for tracking and predictive
simulations (f)

Table 1: Objective cost and term breakdown for three predictive simulations using MEP.

Objective cost Effort cost Smoothing cost Stability cost
𝐽𝐵𝑂𝑆 3.759046 2.270912 0.683608 0.794155
𝐽𝑍𝑀𝑃 4.184254 2.751212 0.725837 0.686290
𝐽𝐴𝐶𝐶 4.774932 3.797785 0.793123 0.174308

While these examples used planar gait simulations, MEP is agnostic to model complexity or task,
and is being used successfully in our ongoing research (e.g. Joshi et al., 2022; Sundararajan
et al., 2023) of locomotor performance in humans and other animals. An additional benefit
of sequestering novel goals into MEP is being able to back-port goals from a newer OpenSim
version to an older version (i.e. taking a goal from OpenSim 4.4 and bringing that functionality
to 4.2). Ultimately, MEP offers a modular framework to rapidly develop, test and compare novel
MocoGoals for features beyond OpenSim Moco’s current scope.

Funding
This work was supported by the National Science Foundation (BCS 2018436 and BCS 2018523).

References
Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John, C., Guendelman, E., &

Thelen, D. (2007). OpenSim: Open-source software to create and analyze dynamic
simulations of movement. Biomedical Engineering, IEEE Transactions on, 54, 1940–1950.
https://doi.org/10.1109/TBME.2007.901024

Dembia, C. L., Bianco, N. A., Falisse, A., Hicks, J. L., & Delp, S. L. (2020). OpenSim
Moco: Musculoskeletal optimal control. PLoS Computational Biology, 16(12), 1–21.
https://doi.org/10.1371/journal.pcbi.1008493

Sundararajan et al. (2025). MocoExtendProblem: Interface Between OpenSim and MATLAB for Rapidly Developing Direct Collocation Goals in
Moco. Journal of Open Source Software, 10(108), 7110. https://doi.org/10.21105/joss.07110.

5

https://doi.org/10.1109/TBME.2007.901024
https://doi.org/10.1371/journal.pcbi.1008493
https://doi.org/10.21105/joss.07110


Denton, A. N., & Umberger, B. R. (2023). Computational performance of musculoskeletal
simulation in OpenSim Moco using parallel computing. International Journal for Numerical
Methods in Biomedical Engineering, 39(12), e3777. https://doi.org/10.1002/cnm.3777

Falisse, A., Serrancolí, G., Dembia, C. L., Gillis, J., Jonkers, I., & De Groote, F. (2019). Rapid
predictive simulations with complex musculoskeletal models suggest that diverse healthy
and pathological human gaits can emerge from similar control strategies. Journal of The
Royal Society Interface, 16(157), 20190402. https://doi.org/10.1098/rsif.2019.0402

Johnson, R. T., Bianco, N. A., & Finley, J. M. (2022). Patterns of asymmetry and energy cost
generated from predictive simulations of hemiparetic gait. PLoS Computational Biology,
18(9), 1–26. https://doi.org/10.1371/journal.pcbi.1010466

Joshi, V., Boyer, K., & Umberger, B. R. (2022). Optimal control gait simulations of older adults
predict foot placement trends not captured by reflex-based models. In the Proceedings of
the North American Congress on Biomechanics. North American Congress on Biomechanics.

Kelly, M. (2017). An Introduction to Trajectory Optimization: How to Do Your Own Direct
Collocation. SIAM Review, 59(4), 849–904. https://doi.org/10.1137/16M1062569

Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia, C. L., Dunne, J. J., Ong, C. F.,
DeMers, M. S., Rajagopal, A., Millard, M., Hamner, S. R., Arnold, E. M., Yong, J. R.,
Lakshmikanth, S. K., Sherman, M. A., Ku, J. P., & Delp, S. L. (2018). OpenSim: Simulating
musculoskeletal dynamics and neuromuscular control to study human and animal movement.
PLoS Computational Biology, 14(7), 1–20. https://doi.org/10.1371/journal.pcbi.1006223

Spomer, A., Conner, B., Schwartz, M., Lerner, Z., & Steele, K. (2023). Audiovisual biofeedback
amplifies plantarflexor adaptation during walking among children with cerebral palsy. Journal
of NeuroEngineering and Rehabilitation, 20. https://doi.org/10.1186/s12984-023-01279-5

Sundararajan, A., Larson, S. G., Umberger, B. R., & O’Neill, M. C. (2023). Optimal Control
Simulations of 3-D Walking in Humans and Bipedal Chimpanzee. In the Proceedings of
The American Society of Biomechanics. American Society of Biomechanics.

Yamaguchi, K. (2018). mexplus. In GitHub repository. GitHub. https://github.com/kyamagu/
mexplus

Sundararajan et al. (2025). MocoExtendProblem: Interface Between OpenSim and MATLAB for Rapidly Developing Direct Collocation Goals in
Moco. Journal of Open Source Software, 10(108), 7110. https://doi.org/10.21105/joss.07110.

6

https://doi.org/10.1002/cnm.3777
https://doi.org/10.1098/rsif.2019.0402
https://doi.org/10.1371/journal.pcbi.1010466
https://doi.org/10.1137/16M1062569
https://doi.org/10.1371/journal.pcbi.1006223
https://doi.org/10.1186/s12984-023-01279-5
https://github.com/kyamagu/mexplus
https://github.com/kyamagu/mexplus
https://doi.org/10.21105/joss.07110

	Summary
	Statement of need
	Requirements

	Showcases
	Funding
	References

