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Summary
DAMASK, the Düsseldorf Advanced Material Simulation Kit, is a modular multi-physics crystal
plasticity simulation package distributed as free and open-source software under the GNU
Affero General Public License (AGPL) (Roters et al., 2019). To facilitate easy pre- and
post-processing of DAMASK simulations and simplify the creation of custom workflows for
Integrated Computational Materials Engineering (ICME), an accompanying Python library has
been developed. This library, which is also AGPL-licensed, is introduced here.

Statement of need
Multi-physics-enriched crystal plasticity simulations are used to establish processing–struc-
ture–property relationships of crystalline materials at engineering length and time scales. Setting
up a simulation requires parameterization of the constitutive models, description of microstruc-
ture and geometry, and definition of boundary and initial conditions. The interpretation of the
resulting data requires tools for statistical analysis, plotting, and 3D visualization. Moreover,
the design and study of complex materials using various computational techniques requires
interoperability between different software packages in ICME workflows (Shah et al., 2022).
These needs are best addressed by a modular set of routines for pre- and post-processing that
integrate seamlessly into an existing ecosystem.

Features
The materialpoint models implemented in DAMASK can be used in conjunction with different
solvers: DAMASK_grid, DAMASK_mesh, DAMASK_Marc. The grid solver (DAMASK_grid) operates
on periodically repeated hexahedral domains discretized by a structured grid, whereas the
two other solvers are based on the finite element method and can be used for unstructured
meshes, thus allowing for more complex geometries. Hence, the definition of the geometry
together with boundary and initial conditions depends on the selected solver and requires
different pre-processing tools. In contrast, the configuration of the materialpoint model and
the DAMASK-specific HDF5 file format that is used to store the simulation results (Diehl et
al., 2017) are solver-agnostic.

The DAMASK Python library is a package called damask and contains functionality for pre-
processing tasks, such as the generation and modification of microstructures, load cases,
material definition, or numerical parameters, as well as functionality for post-processing that
enables analysis and visualization of DAMASK results. A particular focus is laid on finite-strain
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continuum mechanics and crystallography. The routines for conversion between the different
kinds of orientation representations, such as Euler angles, rotation matrices, unit quaternions,
or axis-angle pairs, are based on a consistent set of conventions (Rowenhorst et al., 2015).
The provided routines and data structures interoperate seamlessly with other libraries from the
Python ecosystem, such as NumPy (Harris et al., 2020), pandas (McKinney, 2010), Matplotlib
(Hunter, 2007), SciPy (Virtanen et al., 2020), VTK/PyVista (Ahrens et al., 2005) (Sullivan &
Kaszynski, 2019), PyYAML, h5py (Collette, 2013) (Folk et al., 2011), and orix (Johnstone et
al., 2020) to facilitate the definition of custom ICME workflows.

Apart from its DAMASK-specific processing capabilities, many routines of the library can be
used in other materials science and continuum mechanics applications.

Pre-Processing
The main goal of the pre-processing tools is to enable users to incorporate data from various
sources into their simulation setup. For example, the users can integrate domain-specific
software such as Neper (Quey et al., 2011), DREAM.3D (Groeber & Jackson, 2014), and Gmsh

(Geuzaine & Remacle, 2009) to define microstructures and employ the provided Python
routines to convert them into DAMASK-compatible input files. Similarly, the materialpoint
configuration and load case definition are internally represented as particular Python classes
that simplify the creation, modification, and export to YAML files. In addition to the three
mandatory input files, i.e., geometry definition, material configuration, and the load case
description, the creation and modification of an optional YAML file to fine-tune numerical
parameters is also supported.

Post-Processing
The post-processing tools are centered around the HDF5 output file resulting from a DAMASK
simulation. This flexible file format is called DADF5, short for “DAMASK HDF5” (Diehl
et al., 2017), which allows data storage according to the FAIR principles (Wilkinson et al.,
2016). All data in DADF5 is enriched with metadata, such as the date of creation, a human-
understandable description, and the physical unit, to ensure that the data is findable by humans
and computers. The Result class provides custom views on the hierarchical data layout of
the DADF5 file for easy accesibility. Moreover, it provides routines for the computation of
derived quantities that are stored alongside with automatically created metadata in the output
file. The data can be further processed within Python or exported to various file formats for
analysis using third-party tools such as DREAM.3D, ParaView, or MTEX (Bachmann et al., 2010).
This, together with the fact that the complete simulation setup is stored in the DADF5 file,
makes it possible to re-use and re-evaluate the data.

Alternatives
Some of the functionality provided by the damask package overlaps with other packages, such
as orix (crystallography and rotations), PyVista (3D visualization), and SciPy (rotations).
Because the orix and PyVista packages are currently in an early development status and
not available via native package managers on popular Linux distributions, the corresponding
damask functionality has been implemented independently of both. The rotation functionality
of the damask package does not rely on SciPy in order to reproduce one-to-one the conventions
used in the main simulation code of DAMASK written in Fortran, despite using SciPy routines
for other purposes.
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Availability
The damask Python package is developed within the DAMASK main repository, but is also
available as a separate package via multiple channels. For documentation and installation
options we refer to the DAMASK website.
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