The Journal of Open Source Software

StreamGen: a Python framework for generating
streams of labeled data

Laurenz A. Farthofer ® 12

1 KAI - Kompetenzzentrum Automobil- und Industrieelektronik GmbH, Austria 2 Institute of Computer
Graphics and Vision, Graz University of Technology, Austria

DOI: 10.21105/joss.07206

Software < I -
. amplin ree
= Review @@ ping
= Repository &7 T 7 2 ntial generation| mmmsmrmmemimimmm s -
. [tm"?s""‘"s and AT ‘ ’e_ve,ry decision represents a Y
= Archive &0 | decisions are 1 T L]
17 configurable ond 1 i sempling process from o
| dhangeable over time = transforms " conﬁgurable diserete \
T ’ \ distribution /J
<

Editor: Matthew Feickert @@

. d s
Reviewers: ecision

% transforms ad

= Qfirefly-cpp

= @hoanganhngo610

Submitted: 19 August 2024
Published: 06 December 2024

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Classes

Figure 1: A tree of sampling functions and transformations as a new data structure and framework for
synthetic data generation. Samples are generated by traversing the tree from the root to the leaves. Each
path through the tree represents its own class-conditional distribution. The branching points represent
categorical distributions which determine the path to take for a sample during the tree traversal. By
changing the parameters of the transformations over time, such trees can represent evolving distributions
suitable to generate data streams (see Figure 2).

Summary

StreamGen is a framework for generating streams of labeled, synthetic data from trees composed
of sampling functions and transformation monoids (see Figure 1).

Due to the expensive nature of the labelling process, researchers and machine learning
practitioners often rely on existing datasets and stochastic data augmentation pipelines
like torchvision.transforms.Compose objects (TorchVision maintainers and contributors,
2016). While such methods and datasets are appropriate to study learning from static
domains, emerging research fields like continual learning study learning on long streams of
data, representing evolving experiences. StreamGen addresses this need by giving researchers a
tool to model time-dependent, diverse class-conditional distributions.

Such distributions can be represented through the use of a tree data structure (or other
more general linked structures like directed acyclic graphs) to store sampling functions and

Farthofer. (2024). StreamGen: a Python framework for generating streams of labeled data. Journal of Open Source Software, 9(104), 7206. 1
https://doi.org/10.21105/joss.07206.

https://orcid.org/0000-0003-1477-1327
https://doi.org/10.21105/joss.07206
https://github.com/openjournals/joss-reviews/issues/7206
https://github.com/Infineon/StreamGen
https://doi.org/10.5281/zenodo.14273611
https://www.matthewfeickert.com/
https://orcid.org/0000-0003-4124-7862
https://github.com/firefly-cpp
https://github.com/hoanganhngo610
https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://doi.org/10.21105/joss.07206

The Journal of Open Source Software

transformations. Samples are generated by traversing the tree from the root to the leaves.
Each branching point represents a categorical distribution which determines the path to take
for a sample during the tree traversal. This information can be utilized for automating the
annotation process.

Such a tree comprised of fixed transformations represents a static, class-conditional distribution.
In order to extend the framework to evolving distributions (streams), either the parameters of
the stochastic transformations or the topology of the tree needs to be changed over time (see
Figure 2). Due to the complexity of designing and reasoning about evolving topologies, the
first release of StreamGen (version 1.0) focuses on static tree topologies and only schedules
the parameters of the transformations and the probabilities of the branching points.

StreamGen implements the following abstractions and utility functions to design data streams:

= Classes and functions to construct, schedule and visualize time-dependent parameters
= A selection of custom nodes based on the NodeMixin from anytree (cOfecOde, 2016)
= A SamplingTree class with:
— A pythonic short-hand construction via nested lists and dictionaries
— Parameter scheduling and configuration of all nodes via one update() call
— Multiple sampling strategies (stochastic traversal, stratified, pruned)
— Visualizations using graphviz (Gansner & North, 1997)
= Stream abstraction to use datasets created with StreamGen in CL frameworks like
avalanche (Lomonaco et al., 2021) or continuum (Douillard & Lesort, 2021)

The documentation also contains different stream generation examples:

1. Multi-class time series with different data drifts (covariate, prior-probability and concept
shift)

2. An analog version of the WM811k dataset (Wu et al., 2015) (binary images) with
covariate shift for Domain Adaptation research

3. A defect density wafer map dataset with geometrically generated patterns

experience ¥ experience N+l experience N+2

covariate

drft

concept

drft

I
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

|
I
|
I
1
I
|
|
|
|
|
|
|
|
I
1
I
1

Figure 2: Changes in the topology of the tree of transformations are one possibility to represent evolving
(time-dependent) distributions with different data drift scenarios.

Statement of need

Most machine learning systems rely on stationary, labeled, balanced and large-scale datasets.
Incremental learning (IL), also referred to as lifelong learning (LL) or continual learning (CL),
extends the traditional paradigm to dynamic and evolving environments, where learners need
to acquire knowledge continually from a stream of experiences (as opposed to learning those
concepts jointly from a single dataset) without forgetting concepts from past experiences — a
phenomenon referred to as catastrophic forgetting (Masana et al., 2023).

Farthofer. (2024). StreamGen: a Python framework for generating streams of labeled data. Journal of Open Source Software, 9(104), 7206. 2
https://doi.org/10.21105/joss.07206.

https://github.com/c0fec0de/anytree
https://www.graphviz.org/
https://github.com/ContinualAI/avalanche
https://github.com/Continvvm/continuum
https://doi.org/10.21105/joss.07206

The Journal of Open Source Software

Existing CL frameworks like avalanche (Lomonaco et al., 2021) or continuum (Douillard
& Lesort, 2021) construct data streams by splitting large classification datasets into mul-
tiple experiences containing different classes (class-incremental learning), which has a few
shortcomings:

= Data streams from real environments are rarely comprised of disjoint experiences

= Such constructed scenarios offer limited insight into factors of the stream other than the
class distribution, which are required to study learning scenarios with fewer constraints
on the stream properties like domain adaptation or class-incremental scenarios with
repetition. Some researchers even argue that the dominance of class-incremental scenarios
has lead to the proposal of several rather complex methods, that completely fail in more
realistic, unconstrained scenarios with repetition (Cossu et al., 2022)

= The evaluation of continual learners on such scenarios is not trivial as evident by the
wealth of proposals (Ven et al., 2024)

To answer different research questions in the field of CL, researchers need knowledge and
control over a variety of factors of the underlying data distribution including:

= Class distributions

= Novelties and outliers

= Complexity and evolution of the background domain

= Semantics of the unlabeled parts of a domain

= Class dependencies and composition (for multi-label learning)

A more economical alternative to collecting and labelling streams with desired properties is the
generation of synthetic streams (Lu et al., 2018). Some mentionable efforts in that direction
include augmentation based dataset generation like ImageNet-C (Hendrycks & Dietterich, 2018)
or simulation-based approaches like the EndlessCLSim (Hess et al., 2021), where semantically
labeled street-view images are generated by a game engine, that procedurally generates the city
environment and simulates drift by modifying parameters (like the weather and illumination
conditions) over time.

StreamGen builds on these ideas and provides researchers with a general and intuitive framework
to generate data streams without constraints on the stream characteristics and the full
knowledge of underlying distributions and parameters. It will lay the foundation for more
directed and efficient research on Continual Learning.

Future work

The generation of multi-label samples requires loops and cycles for a compact and convenient
representation. Such scenarios are still representable with tree data structures by unrolling
these cycles through many redundant paths and transformations. A representation using less
restricted types of graphs presents an interesting future extension to the framework. StreamGen
already defines protocols and base classes to include different sampler concepts in the future.
More declarative ways to build schedules and distributions represent other promising extensions.

Acknowledgements

This work was funded by the Austrian Research Promotion Agency (FFG, Project No. 905107).

Special thanks to Benjamin Steinwender, Marius Birkenbach, Nikolaus Neugebauer, Matthew
Feickert, Hoang Anh Ngo and lztok Fister Jr. for their valuable feedback. | also want to
thank Infineon and KAI for letting me publish this project under a permissive and open license.
Finally, | want to thank my university supervisors Thomas Pock and Marc Masana for their
guidance and trust in me and my visions.

Farthofer. (2024). StreamGen: a Python framework for generating streams of labeled data. Journal of Open Source Software, 9(104), 7206. 3
https://doi.org/10.21105/joss.07206.

https://github.com/ContinualAI/avalanche
https://github.com/Continvvm/continuum
https://github.com/hendrycks/robustness
https://arxiv.org/abs/2106.02585
https://doi.org/10.21105/joss.07206

SS

The Journal of Open Source Software

References

cOfecOde. (2016). Anytree: Python tree data library (Version 2.12.1). GitHub. https:
//github.com/cOfecOde/anytree

Cossu, A., Graffieti, G., Pellegrini, L., Maltoni, D., Bacciu, D., Carta, A., & Lomonaco,
V. (2022). Is Class-Incremental Enough for Continual Learning? Frontiers in Artificial
Intelligence, 5. https://doi.org/10.3389 /frai.2022.829842

Douillard, A., & Lesort, T. (2021). Continuum: Simple Management of Complex Continual
Learning Scenarios. arXiv. https://doi.org/10.48550/arXiv.2102.06253

Gansner, E., & North, S. (1997). An Open Graph Visualization System and lts Applications to
Software Engineering. Software - Practice and Experience - SPE, 30. https://doi.org/10.
1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N

Hendrycks, D., & Dietterich, T. (2018). Benchmarking Neural Network Robustness to Common
Corruptions and Perturbations. International Conference on Learning Representations.
https://openreview.net/forum?id=HJz6tiCqYm

Hess, T., Mundt, M., Pliushch, I., & Ramesh, V. (2021, June 8). A Procedural World
Generation Framework for Systematic Evaluation of Continual Learning. T hirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 1). https://openreview.net/forum?id=LICQWh8-pwK

Lomonaco, V., Pellegrini, L., Cossu, A., Carta, A., Graffieti, G., Hayes, T. L., De Lange,
M., Masana, M., Pomponi, J., Van De Ven, G. M., Mundt, M., She, Q., Cooper, K.,
Forest, J., Belouadah, E., Calderara, S., Parisi, G. |., Cuzzolin, F., Tolias, A. S., .. Maltoni,
D. (2021). Avalanche: An End-to-End Library for Continual Learning. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 3595-3605.
https://doi.org/10.1109/CVPRW53098.2021.00399

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under Concept
Drift: A Review. IEEE Transactions on Knowledge and Data Engineering, 1-1. https:
//doi.org/10.1109/ TKDE.2018.2876857

Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A. D., & van de Weijer,
J. (2023). Class-Incremental Learning: Survey and Performance Evaluation on Image
Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5),
5513-5533. https://doi.org/10.1109/ TPAMI.2022.3213473

TorchVision maintainers and contributors. (2016). TorchVision: PyTorch’s Computer Vision
library (Version 0.20.1). https://github.com/pytorch/vision

Ven, G. M. van de, Soures, N., & Kudithipudi, D. (2024). Continual Learning and Catastrophic
Forgetting. arXiv. https://doi.org/10.48550/arXiv.2403.05175

Wu, M.-J., Jang, J.-S. R., & Chen, J.-L. (2015). Wafer Map Failure Pattern Recognition
and Similarity Ranking for Large-Scale Data Sets. IEEE Transactions on Semiconductor
Manufacturing, 28(1), 1-12. https://doi.org/10.1109/TSM.2014.2364237

Farthofer. (2024). StreamGen: a Python framework for generating streams of labeled data. Journal of Open Source Software, 9(104), 7206. 4
https://doi.org/10.21105/joss.07206.

https://github.com/c0fec0de/anytree
https://github.com/c0fec0de/anytree
https://doi.org/10.3389/frai.2022.829842
https://doi.org/10.48550/arXiv.2102.06253
https://doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N
https://openreview.net/forum?id=HJz6tiCqYm
https://openreview.net/forum?id=LlCQWh8-pwK
https://doi.org/10.1109/CVPRW53098.2021.00399
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TPAMI.2022.3213473
https://github.com/pytorch/vision
https://doi.org/10.48550/arXiv.2403.05175
https://doi.org/10.1109/TSM.2014.2364237
https://doi.org/10.21105/joss.07206

	Summary
	Statement of need
	Future work
	Acknowledgements
	References

