
AMaze: a benchmark generator for sighted
maze-navigating agents
Kevin Godin-Dubois 1¶, Karine Miras 1, and Anna V. Kononova 2

1 Vrije Universiteit Amsterdam, The Netherlands 2 Leiden University, The Netherlands ¶ Corresponding
author

DOI: 10.21105/joss.07208

Software
• Review
• Repository
• Archive

Editor: Chris Vernon
Reviewers:

• @stheid
• @crvernon

Submitted: 01 July 2024
Published: 10 November 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The need to provide fair comparisons between agents, especially in the field of Reinforcement
Learning, has led to a plethora of benchmarks. While these are devoted to tailor-made
problems, they offer with very little degrees of freedom for the experimenter. AMaze is instead
a benchmark generator capable of producing human-intelligible environments of arbitrarily high
complexity. By using visual cues in a maze-navigation task, the library empowers researchers
across a large range of fields.

Statement of need
AMaze is a pure-Python package with an emphasis on the easy and intuitive generation,
evaluation and analysis of mazes. Its primary goal is to provide a way to quickly generate
mazes of targeted difficulty, e.g., to test a Reinforcement Learning algorithm. By modeling
loosely embodied robots with three distinct input/output spaces, AMaze makes it possible to
prototype agent-centric scenarios of decision making, pattern recognition and general behavior
through exposition to a wide array of contexts.

Figure 1: A sample maze from the AMaze library. In the API, every maze can be converted to and from
a human-readable string where each underscore-separated component describes one of its facets. The
seed seeds the random number generator used for the paths and stochastic placement of lures and traps.
These have a specific probability, shape and/or value and may be specified multiple times to increase the
complexity, as described in the documentation1

1https://amaze.readthedocs.io/en/latest/

Godin-Dubois et al. (2025). AMaze: a benchmark generator for sighted maze-navigating agents. Journal of Open Source Software, 10(115), 7208.
https://doi.org/10.21105/joss.07208.

1

https://orcid.org/0009-0002-6033-3555
https://orcid.org/0000-0003-4942-3488
https://orcid.org/0000-0002-4138-7024
https://doi.org/10.21105/joss.07208
https://github.com/openjournals/joss-reviews/issues/7208
https://github.com/kgd-al/amaze
https://doi.org/10.5281/zenodo.17571759
https://energyenvironment.pnnl.gov/staff/staff_info.asp?staff_num=1834
https://orcid.org/0000-0002-3406-6214
https://github.com/stheid
https://github.com/crvernon
https://creativecommons.org/licenses/by/4.0/
https://amaze.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.07208


Features
Users of AMaze have two main components to take into consideration: mazes and agents.
These are introduced below with more details available in the documentation.

Mazes
Mazes can be described by human-readable string as illustrated in Figure 1, where every
component is optional. The seed is used in the random number generator responsible for: a)
the depth-first search that creates the paths and b) the stochastic placement of the lures and
traps. As will be detailed below, agents only see a single cell at a time making intersections
impossible to handle without additional information. Clues provide such an information by
helpfully pointing towards the correct direction. However, users may additionally specify the
presence of traps, at a given frequency, to replace a clue at an intersection. Traps always
point towards the wrong direction thereby forcing agents to discriminate between the two.
Furthermore, there is a lighter class of negative sign, namely lures, which occur outside of
intersection and unhelpfully point towards an obviously bad direction (e.g. a wall).

Mazes can broadly be grouped into classes according to the features they exhibit. The most
trivial cases correspond to mazes with a single path (enforced by removing intersections). When
intersections are labeled with appropriate clues, mazes are considered as simple. Additionally,
exhibiting either lures or traps form the corresponding classes while the more general case with
all types of signs is labeled as complex. To accurately compare between different types of
mazes across multiple categories, the library provides, for any given maze 𝑀, two dedicated
metrics, the surprisingness 𝑆𝑀 and deceptiveness 𝐷𝑀 defined as follows:

𝑆𝑀 = − ∑
𝑖∈𝐼𝑀

𝑝(𝑖) ∗ 𝑙𝑜𝑔2(𝑝(𝑖))

𝐷𝑀 = ∑
𝑐∈cells(𝑀)

∑
𝑠∈traps(𝑀)
𝑠[0∶3]=𝑐

−𝑝(𝑠|𝑐)𝑙𝑜𝑔2(𝑝(𝑠|𝑐))

which, informally, account for the likelihood of encountering different states (walls, signs)
and different variations of a given cell (same walls, different signs). Through these metrics,
experimenters can make an informed decision about the level of complexity of the mazes they
use. As illustrated by the distributions of 𝑆𝑀 and 𝐷𝑀, sampled from 500’000 mazes across all
five classes (Figure 2), the space of all possible mazes is both diverse and arbitrarily complex.

Figure 2: Distribution of Surprisingness 𝑆𝑀 versus Deceptiveness 𝐷𝑀 across 500’000 unique mazes
from all five different classes. Outlier mazes are depicted in the borders to illustrate the underlying
Surprisingness (right column) or lack thereof (left column).

Godin-Dubois et al. (2025). AMaze: a benchmark generator for sighted maze-navigating agents. Journal of Open Source Software, 10(115), 7208.
https://doi.org/10.21105/joss.07208.

2

https://amaze.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.07208


Figure 3: Discrete (left) and continuous (right) inputs for the examples shown in Figure 1. The former is
solely used for the fully discrete case while the latter covers both hybrid and fully continuous cases.

Agents
Agents in AMaze are loosely embodied robots that wander around mazes perceiving only local
information (the cell they are in) and a one-item memory (the direction they come from, if any).
To accommodate various use cases, these agents come in three different forms: fully discrete,
fully continuous and hybrid. In the former case, an agent has access to something akin to a
pre-processed input, as in Figure 3, where the first four fields describes the wall configuration
and the remainder provide information about signs, if any. These can be distinguished through
their luminosity as agents only perceive grayscale values. These observations are used to
deduce the correct action out of the four cardinal directions.

In the hybrid case, actions are identical while observations are coarse-grained images, of
configurable size (e.g., 11x11 in Figure 3), where walls are indicated by pixels on the perimeter.
The temporal information of the previous direction is still provided, as a single white pixel
centered on the appropriate side. More importantly, the center of the image is used to display an
arbitrary shape as a sign (clue, lure or trap). Finally, the fully continuous case is characterized
by having the robot control its acceleration. Thus, the agent must also infer and take into
consideration its position and inertia.

Comparison to existing literature
AMaze differs from existing benchmarks on two important aspects:

• Computational efficiency when compared to alternative vision-based tasks
• Extensive control over the environment and intuitive understanding of an agent’s behavior

The former relates to the underlying LUT-based generation of visual information which alleviates
the need for expensive rendering techniques. Through having only array pointers moving
around, AMaze was designed to have fast-running simulations while still being directly usable
with traditional architectures such as CNNs. On the latter point, the API allows precise tuning
of many of a maze’s characteristics, in addition to random exploration. Additionally, as an
agent behavior is a 2D trajectory in a maze, it is very straightforward for a human observer to
interpret its behavior and determine what went right or wrong, and when (Godin-Dubois et al.,
2025).

To illustrate the initial statements, we compare AMaze to a sample of benchmark suites
(Figure 4). This includes gymnasium (Towers et al., 2023), an ubiquitous benchmark suite
in the Python ecosystem; Lab2D (Beattie et al., 2020), a grid-world environment with both
text and script parametrization; and Maze Explorer (Harries et al., 2019), a customizable 3D
maze platform based on the DOOM video-game. Indeed, while mazes are commonly used as
evaluation environments in Machine Learning (Lehman & Stanley, 2008; Miconi et al., 2018)
they are often ad-hock solutions, deeply tied to a specific framework as in Beattie et al. (2016).

The test uses 81 variations of AMaze with different input image sizes (11x11, 15x15, 21x21),

Godin-Dubois et al. (2025). AMaze: a benchmark generator for sighted maze-navigating agents. Journal of Open Source Software, 10(115), 7208.
https://doi.org/10.21105/joss.07208.

3

https://gymnasium.farama.org/
https://doi.org/10.21105/joss.07208


maze sizes (5, 10, 20), lure frequencies (0, 0.5, 1), and observation and action spaces (discrete,
hybrid and continuous). This diversity of environment types was generated to give sufficient
data for a fair comparison while also showcasing the ease with which AMaze can create
feature-specific sets of mazes e.g. for benchmarking purposes. In the figure, 𝑁 is the number
of unique environments used/provided by the library and Time is measured on 1000 time
steps averaged over 10 replicates on an i7-1185G7 (3GHz). Discrete inputs are enumerable
and finite while Continuous uses decimal values. Images can fall in either categories, but are
characterized by a high number of inputs.

N Inputs Outputs Control
Time (s)

Family Median 10 2 10 1 100

Faster &
No control

Slower &
Low control

Toy Text 5 Discrete Discrete None 0.009
Classic Control 5 Continuous Both None 0.023
AMaze 192 Both Both Extensive 0.025
Lab2D 11 Both Discrete Script 0.056
Mujoco 22 Continuous Continuous None 0.090
Box2D 8 Continuous Both None 0.112
ALE 104 Image Discrete Modes 0.400
MazeExplorer 81 Image Discrete Extensive 0.553

Figure 4: Comparison of AMaze with gymnasium’s environments suite. Inputs, Outputs and amount of
human Control are taken from the documentation while Time is measured on 1000 timesteps averaged
over 10 replicates. AMaze is more computationally efficient than all but the simplest environments while
also being the highly parametrizable.

Control describes how a human experimenter can specify, or at least influence, environmental
features to suit their needs. Thus None implies fixed environments (most common) while
various libraries use different methods to allow for customization such as the Lua scripting
language (Lab2D), built-in Modes (ALE) or hand-made maps (Toy Text, Frozen Lake only).
Extensive control requires a streamlined way to generate feature-specific custom environments
with dense visual information.

In terms of computational speed, while taking more time than Classical Control tasks (Barto
et al., 1983) or Toy Text environments (Sutton & Barto, 2018), AMaze is demonstrably faster
than those based on 2D (Box2d) or 3D (MuJoCo, Todorov et al. (2012)) simulators or the
Arcade Learning Environment (Bellemare et al., 2013).

Given the broad range of generated environments, this comparison demonstrates how competi-
tive the library is compared to existing alternatives with respect to its execution speed and
customizability.

Acknowledgements
This research was funded by the Hybrid Intelligence Center, a 10-year programme funded by
the Dutch Ministry of Education, Culture and Science through the Netherlands Organisation
for Scientific Research, https://hybrid-intelligence-centre.nl, grant number 024.004.022.

References
Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that

can solve difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(5), 834–846. https://doi.org/10.1109/TSMC.1983.6313077

Beattie, C., Köppe, T., Duéñez-Guzmán, E. A., & Leibo, J. Z. (2020). DeepMind Lab2D.
https://github.com/deepmind/lab2d

Godin-Dubois et al. (2025). AMaze: a benchmark generator for sighted maze-navigating agents. Journal of Open Source Software, 10(115), 7208.
https://doi.org/10.21105/joss.07208.

4

https://box2d.org/
https://github.com/google-deepmind/mujoco
https://hybrid-intelligence-centre.nl
https://doi.org/10.1109/TSMC.1983.6313077
https://github.com/deepmind/lab2d
https://doi.org/10.21105/joss.07208


Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq, A.,
Green, S., Valdés, V., Sadik, A., Schrittwieser, J., Anderson, K., York, S., Cant, M., Cain,
A., Bolton, A., Gaffney, S., King, H., Hassabis, D., … Petersen, S. (2016). DeepMind Lab.
https://arxiv.org/abs/1612.03801v2

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence
Research, 47, 253–279. https://doi.org/10.1613/jair.3912

Godin-Dubois, K., Miras, K., & Anna V Kononova. (2025). AMaze: An intuitive benchmark
generator for fast prototyping of generalizable agents [Journal]. Frontiers in Artificial
Intelligence, Volume 8 - 2025. https://doi.org/10.3389/frai.2025.1511712

Harries, L., Lee, S., Rzepecki, J., Hofmann, K., & Devlin, S. (2019). MazeExplorer: A
Customisable 3D Benchmark for Assessing Generalisation in Reinforcement Learning. 2019
IEEE Conference on Games (CoG), 2019-Augus, 1–4. https://doi.org/10.1109/CIG.2019.
8848048

Lehman, J., & Stanley, K. O. (2008). Exploiting Open-Endedness to Solve Problems Through
the Search for Novelty. Artificial Life XI, Alife Xi, 329–336.

Miconi, T., Clune, J., & Stanley, K. O. (2018). Differentiable plasticity: Training plastic neural
networks with backpropagation. 35th International Conference on Machine Learning, ICML
2018, 8, 5728–5739. ISBN: 9781510867963

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
ISBN: 9780262039246

Todorov, E., Erez, T., & Tassa, Y. (2012). MuJoCo: A physics engine for model-based control.
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 5026–5033.
https://doi.org/10.1109/IROS.2012.6386109

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U., Cola, G. de, Deleu, T., Goulão, M.,
Kallinteris, A., KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff, S., Tai, J. J.,
Shen, A. T. J., & Younis, O. G. (2023). Gymnasium. https://doi.org/10.5281/zenodo.
8269265

Godin-Dubois et al. (2025). AMaze: a benchmark generator for sighted maze-navigating agents. Journal of Open Source Software, 10(115), 7208.
https://doi.org/10.21105/joss.07208.

5

https://arxiv.org/abs/1612.03801v2
https://doi.org/10.1613/jair.3912
https://doi.org/10.3389/frai.2025.1511712
https://doi.org/10.1109/CIG.2019.8848048
https://doi.org/10.1109/CIG.2019.8848048
https://proceedings.mlr.press/v80/miconi18a.html
https://proceedings.mlr.press/v80/miconi18a.html
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.5281/zenodo.8269265
https://doi.org/10.5281/zenodo.8269265
https://doi.org/10.21105/joss.07208

	Summary
	Statement of need
	Features
	Mazes
	Agents

	Comparison to existing literature
	Acknowledgements
	References

