
Salt: Multimodal Multitask Machine Learning for High
Energy Physics
Jackson Barr 1, Diptaparna Biswas 2, Maxence Draguet 3, Philipp
Gadow 4, Emil Haines 1, Osama Karkout 5, Dmitrii Kobylianskii 6, Wei
Sheng Lai 1, Matthew Leigh 7, Nicholas Luongo 10, Ivan Oleksiyuk 7,
Nikita Pond 1, Sébastien Rettie 4, Andrius Vaitkus 1, Samuel Van
Stroud 1, and Johannes Wagner 9

1 University College London, United Kingdom 2 University of Siegen 3 University of Oxford, United
Kingdom 4 European Laboratory for Particle Physics CERN, Switzerland 5 Nikhef 6 Department of
Particle Physics and Astrophysics, Weizmann Institute of Science, Israel 7 Université de Genève,
Switzerland 8 Technical University of Munich, Germany 9 University of California, Berkeley 10 Argonne
National Laboratory

DOI: 10.21105/joss.07217

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @divijghose
• @GarrettMerz

Submitted: 12 March 2024
Published: 31 August 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
High energy physics studies the fundamental particles and forces that constitute the universe,
often through experiments conducted in large particle accelerators such as the Large Hadron
Collider (LHC) (Evans & Bryant, 2008). Salt is a Python application developed for the high
energy physics community that streamlines the training and deployment of advanced machine
learning (ML) models, making them more accessible and promoting shared best practices.
Salt features a generic multimodal, multitask model skeleton which, coupled with a strong
emphasis on modularity, configurability, and ease of use, can be used to tackle a wide variety
of high energy physics ML applications.

Some key features of Salt are listed below:

• Based on established frameworks: Salt is built upon PyTorch (Paszke et al., 2019) and
Lightning (Falcon & The PyTorch Lightning team, 2019) for maximum performance and
scalability with minimal boilerplate code.

• Multimodal, multitask models: Salt models support multimodal inputs and can be
configured to perform various tasks such as classification, regression, segmentation, and
edge classification tasks. Any combination of these can be used to flexibly define models
for multitask learning problems.

• Customisable and extensible: Salt supports full customisation of training and model
configuration through YAML config files. Its modular design allows for the easy integration
of custom dataloaders, layers, and models.

• Train at scale: Salt can handle large volumes of data with efficient HDF5 (The HDF
Group, 1997) dataloaders. It also includes multi-GPU support from Lightning, enabling
distributed training.

• Deployment ready: Salt facilitates ONNX (Bai et al., 2019) serialisation for integrating
models into C++ based software environments.

Statement of need
In high energy physics research the reliance on ML for data analysis and object classification is
growing (Cagnotta et al., 2022; Guest et al., 2018). Salt meets this growing need by providing
a versatile, performant, and user-friendly tool for developing advanced ML models. Salt was

Barr et al. (2025). Salt: Multimodal Multitask Machine Learning for High Energy Physics. Journal of Open Source Software, 10(112), 7217.
https://doi.org/10.21105/joss.07217.

1

https://orcid.org/0000-0002-9752-9204
https://orcid.org/0000-0002-7543-3471
https://orcid.org/0000-0003-1530-0519
https://orcid.org/0000-0003-4475-6734
https://orcid.org/0000-0002-5417-2081
https://orcid.org/0000-0002-4907-9499
https://orcid.org/0009-0002-0070-5900
https://orcid.org/0009-0001-6726-9851
https://orcid.org/0000-0003-1406-1413
https://orcid.org/0000-0001-6527-0253
https://orcid.org/0000-0002-4784-6340
https://orcid.org/0000-0002-5966-0332
https://orcid.org/0000-0002-7092-3893
https://orcid.org/0000-0002-0393-666X
https://orcid.org/0000-0002-7969-0301
https://orcid.org/0000-0002-5588-0020
https://doi.org/10.21105/joss.07217
https://github.com/openjournals/joss-reviews/issues/7217
https://github.com/umami-hep/salt
https://doi.org/10.5281/zenodo.16737118
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/divijghose
https://github.com/GarrettMerz
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07217


originally developed to train state of the art flavour tagging models at the ATLAS experiment
(ATLAS Collaboration, 2008) at the LHC. Flavour tagging, the identification of jets from
bottom and charm quarks, plays a crucial role in analysing ATLAS collision data. This process
is key for precision Standard Model measurements, particularly in the characterisation of the
Higgs boson, and for investigating new phenomena. The unique characteristics of hadrons
containing bottom and charm quarks – such as their long lifetimes, high mass, and high decay
multiplicity – create distinct signatures in particle detectors that can be effectively exploited
by ML algorithms. The presence of hadrons containing bottom and charm quarks can be
inferred via the identification of approximately 3-5 reconstructed charged particle trajectories
from the weak decay of the heavy flavour hadron amidst several more tracks from the primary
proton-proton interaction vertex.

While initially developed for flavour tagging, Salt has evolved into a flexible tool that can be used
for a wide range of tasks, from object and event classification, regression of object properties,
to object reconstruction (via edge classification or input segmentation), demonstrating its
broad applicability across various data analysis challenges in high energy physics.

Model Architecture
Salt is designed to be fully modular, but ships with a flexible model architecture that can be
configured for a variety of use cases. This architecture facilitates the training of multimodal
and multitask models as depicted in Figure 1, and is designed to take advantage of multiple
input modalities. In the context of jet classification, these input modalities might include
global features of the jet and varying numbers of jet constituents such as charged particle
trajectories, calorimeter energy depositions, reconstructed leptons, or inner detector spacepoints.
The architecture is described briefly below. First, each input type (e.g., tracks, calorimeter
deposits) is independently projected into a common embedding space of fixed dimension using
separate initialisation networks. These initialisation networks can optionally concatenate global
features with constituent features and apply positional encoding to certain features, for example
azimuthal angle. Once embedded, the different types of constituents are considered to be in
the same semantic space and are processed together by a transformer encoder that allows
them to interact through stacked multi-head attention layers. The encoder maintains the same
embedding dimension throughout its layers and can optionally update edge features if they
are present. The encoder then outputs to a set of task-specific modules, each tailored to a
specific learning objective. The initialisation networks, transformer encoder, and task-specific
networks are trained together. This approach allows the model to leverage all the available
detector information, leading to improved performance. Concrete examples of this architecture
are in use at ATLAS (Collaboration, 2025; Graph Neural Network Jet Flavour Tagging with the
ATLAS Detector, 2022; Transformer Neural Networks for Identifying Boosted Higgs Bosons
decaying into 𝑏 ̄𝑏 and 𝑐 ̄𝑐 in ATLAS, 2023).

Barr et al. (2025). Salt: Multimodal Multitask Machine Learning for High Energy Physics. Journal of Open Source Software, 10(112), 7217.
https://doi.org/10.21105/joss.07217.

2

https://doi.org/10.21105/joss.07217


Figure 1: This diagram illustrates the flow of information within a generic model trained using Salt.
In this example, global object features are provided alongside two types of constituents, “Type A” and
“Type B”, which represent different input modalities such as charged particle trajectories or calorimeter
energy depositions. The model is configured with three training objectives, each of which may relate to
the global object or one of the constituent modalities. Concatenation is denoted by ⊕.

Related work
Umami (Barr & others, 2024) is a related software package in use at ATLAS. While Salt relies
on similar preprocessing techniques as those provided by Umami, it provides several additional
features which make it a more powerful and flexible tool for creating advanced ML models.
Namely, Salt provides support for multimodal and multitask learning, optimised Transformer
encoders (Vaswani et al., 2017), and distributed model training.

Acknowledgements
The development of Salt is part of the offline software research and development programme
of the ATLAS Collaboration, and we thank the collaboration for its support and cooperation.
This work is funded in part by the UK’s Science and Technology Facilities Council via University
College London’s Centre for Doctoral Training in Data Intensive Science, and the Royal Society.

References
ATLAS Collaboration. (2008). The ATLAS Experiment at the CERN Large Hadron Collider.

JINST, 3, S08003. https://doi.org/10.1088/1748-0221/3/08/S08003

Bai, J., Lu, F., Zhang, K., & others. (2019). ONNX: Open neural network exchange. In
GitHub repository. https://github.com/onnx/onnx; GitHub.

Barr, J., & others. (2024). Umami: A python toolkit for jet flavour tagging. In GitHub
repository. https://github.com/umami-hep/umami-preprocessing; GitHub.

Cagnotta, A., Carnevali, F., & Iorio, A. D. (2022). Machine learning applications for jet
tagging in the CMS experiment. Applied Sciences, 12(20), 10574. https://doi.org/10.
3390/app122010574

Collaboration, A. (2025). Transforming jet flavour tagging at ATLAS. https://arxiv.org/abs/
2505.19689

Evans, L., & Bryant, P. (2008). LHC Machine. JINST, 3, S08001. https://doi.org/10.1088/
1748-0221/3/08/S08001

Falcon, W., & The PyTorch Lightning team. (2019). PyTorch Lightning (Version 1.4).

Barr et al. (2025). Salt: Multimodal Multitask Machine Learning for High Energy Physics. Journal of Open Source Software, 10(112), 7217.
https://doi.org/10.21105/joss.07217.

3

https://doi.org/10.1088/1748-0221/3/08/S08003
https://github.com/onnx/onnx
https://github.com/umami-hep/umami-preprocessing
https://doi.org/10.3390/app122010574
https://doi.org/10.3390/app122010574
https://arxiv.org/abs/2505.19689
https://arxiv.org/abs/2505.19689
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.21105/joss.07217


https://doi.org/10.5281/zenodo.3828935

Graph Neural Network Jet Flavour Tagging with the ATLAS Detector. (2022). CERN.
https://cds.cern.ch/record/2811135

Guest, D., Cranmer, K., & Whiteson, D. (2018). Deep learning and its application to
LHC physics. Annual Review of Nuclear and Particle Science, 68(1), 161–181. https:
//doi.org/10.1146/annurev-nucl-101917-021019

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

The HDF Group. (1997). Hierarchical Data Format, version 5.

Transformer Neural Networks for Identifying Boosted Higgs Bosons decaying into 𝑏 ̄𝑏 and 𝑐 ̄𝑐 in
ATLAS. (2023). CERN. https://cds.cern.ch/record/2866601

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
& Polosukhin, I. (2017). Attention Is All You Need. arXiv e-Prints, arXiv:1706.03762.
https://doi.org/10.48550/arXiv.1706.03762

Barr et al. (2025). Salt: Multimodal Multitask Machine Learning for High Energy Physics. Journal of Open Source Software, 10(112), 7217.
https://doi.org/10.21105/joss.07217.

4

https://doi.org/10.5281/zenodo.3828935
https://cds.cern.ch/record/2811135
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1146/annurev-nucl-101917-021019
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://cds.cern.ch/record/2866601
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.21105/joss.07217

	Summary
	Statement of need
	Model Architecture
	Related work
	Acknowledgements
	References

