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Summary
High energy physics studies the fundamental particles and forces that constitute the universe,
often through experiments conducted in large particle accelerators such as the Large Hadron
Collider (LHC) (Evans & Bryant, 2008). Salt is a Python application developed for the high
energy physics community that streamlines the training and deployment of advanced machine
learning (ML) models, making them more accessible and promoting shared best practices.
Salt features a generic multimodal, multitask model skeleton which, coupled with a strong
emphasis on modularity, configurability, and ease of use, can be used to tackle a wide variety
of high energy physics ML applications.

Some key features of Salt are listed below:

• Based on established frameworks: Salt is built upon PyTorch (Paszke et al., 2019) and
Lightning (Falcon & The PyTorch Lightning team, 2019) for maximum performance and
scalability with minimal boilerplate code.

• Multimodal, multitask models: Salt models support multimodal inputs and can be
configured to perform various tasks such as classification, regression, segmentation, and
edge classification tasks. Any combination of these can be used to flexibly define models
for multitask learning problems.

• Customisable and extensible: Salt supports full customisation of training and model
configuration through YAML config files. Its modular design allows for the easy integration
of custom dataloaders, layers, and models.

• Train at scale: Salt can handle large volumes of data with efficient HDF5 (The HDF
Group, 1997) dataloaders. It also includes multi-GPU support from Lightning, enabling
distributed training.

• Deployment ready: Salt facilitates ONNX (Bai et al., 2019) serialisation for integrating
models into C++ based software environments.

Statement of need
In high energy physics research the reliance on ML for data analysis and object classification is
growing (Cagnotta et al., 2022; Guest et al., 2018). Salt meets this growing need by providing
a versatile, performant, and user-friendly tool for developing advanced ML models. Salt was
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originally developed to train state of the art flavour tagging models at the ATLAS experiment
(ATLAS Collaboration, 2008) at the LHC. Flavour tagging, the identification of jets from
bottom and charm quarks, plays a crucial role in analysing ATLAS collision data. This process
is key for precision Standard Model measurements, particularly in the characterisation of the
Higgs boson, and for investigating new phenomena. The unique characteristics of hadrons
containing bottom and charm quarks – such as their long lifetimes, high mass, and high decay
multiplicity – create distinct signatures in particle detectors that can be effectively exploited
by ML algorithms. The presence of hadrons containing bottom and charm quarks can be
inferred via the identification of approximately 3-5 reconstructed charged particle trajectories
from the weak decay of the heavy flavour hadron amidst several more tracks from the primary
proton-proton interaction vertex.

While initially developed for flavour tagging, Salt has evolved into a flexible tool that can be used
for a wide range of tasks, from object and event classification, regression of object properties,
to object reconstruction (via edge classification or input segmentation), demonstrating its
broad applicability across various data analysis challenges in high energy physics.

Model Architecture
Salt is designed to be fully modular, but ships with a flexible model architecture that can be
configured for a variety of use cases. This architecture facilitates the training of multimodal
and multitask models as depicted in Figure 1, and is designed to take advantage of multiple
input modalities. In the context of jet classification, these input modalities might include
global features of the jet and varying numbers of jet constituents such as charged particle
trajectories, calorimeter energy depositions, reconstructed leptons, or inner detector spacepoints.
The architecture is described briefly below. First, each input type (e.g., tracks, calorimeter
deposits) is independently projected into a common embedding space of fixed dimension using
separate initialisation networks. These initialisation networks can optionally concatenate global
features with constituent features and apply positional encoding to certain features, for example
azimuthal angle. Once embedded, the different types of constituents are considered to be in
the same semantic space and are processed together by a transformer encoder that allows
them to interact through stacked multi-head attention layers. The encoder maintains the same
embedding dimension throughout its layers and can optionally update edge features if they
are present. The encoder then outputs to a set of task-specific modules, each tailored to a
specific learning objective. The initialisation networks, transformer encoder, and task-specific
networks are trained together. This approach allows the model to leverage all the available
detector information, leading to improved performance. Concrete examples of this architecture
are in use at ATLAS (Collaboration, 2025; Graph Neural Network Jet Flavour Tagging with the
ATLAS Detector, 2022; Transformer Neural Networks for Identifying Boosted Higgs Bosons
decaying into 𝑏 ̄𝑏 and 𝑐 ̄𝑐 in ATLAS, 2023).
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Figure 1: This diagram illustrates the flow of information within a generic model trained using Salt.
In this example, global object features are provided alongside two types of constituents, “Type A” and
“Type B”, which represent different input modalities such as charged particle trajectories or calorimeter
energy depositions. The model is configured with three training objectives, each of which may relate to
the global object or one of the constituent modalities. Concatenation is denoted by ⊕.

Related work
Umami (Barr & others, 2024) is a related software package in use at ATLAS. While Salt relies
on similar preprocessing techniques as those provided by Umami, it provides several additional
features which make it a more powerful and flexible tool for creating advanced ML models.
Namely, Salt provides support for multimodal and multitask learning, optimised Transformer
encoders (Vaswani et al., 2017), and distributed model training.
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