The Journal of Open Source Software

wmpy-power: A Python package for process-based
regional hydropower simulation

Travis B. Thurber ®19, Daniel Broman ©®1, Tian Zhou®!, and Nathalie
Voisin © 12

1 Pacific Northwest National Laboratory, Richland, WA., USA 2 University of Washington, Seattle, WA,
USA 9 Corresponding author

DOI: 10.21105/joss.07225

Software
« Review & Summary
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« Archive 7 Hydropower is an important source of renewable energy in many parts of the world. The

generation potential for a hydropower facility can vary greatly due to fluctuations in precipitation
and snowmelt patterns impacting streamflow and reservoir storage. Human activities such
as irrigation, manufacturing, and hydration can also influence water availability at nearby
and downstream facilities. wmpy-power, the hydropower model described in this work, is
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= Qijbd hydropower from climate change and human adaptive behaviors to inform long-term planning
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Authors of papers retain copyright wmpy-power (Water Management Python - Hydropower) is a Python implementation of the
and release the work under a WMP algorithm (Zhou et al., 2018) for hydropower simulation developed to support long-term

Creative Commons Attribution 4.0  electricity grid infrastructure planning and climate impacts studies. The model simulates

International License (CC BY 4.0). hydropower production at the facility scale using a minimal set of physical characteristics for
each facility, timeseries of daily streamflow and reservoir storage, and historical observations of
monthly hydropower production. With this data, the model performs a two-step calibration
process using the Shuffled Complex Evolution algorithm (Duan et al., 1993) to optimize a
set of facility and regional efficiency and bias-correction factors. Once calibrated, the model
can then be used to simulate regional and facility-scale hydropower production for arbitrary
timeseries of streamflow and reservoir storage. See Figure 1 for an example of wmpy-power
modeled generation compared to observed generation at the facility and regional scale.
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Figure 1: Example model output of simulated hydropower at the regional and facility scales compared
with example observations. The regional signal exhibits high fidelity despite the noise and missing data
points in the certain facility signals. In this example, the calibration period was 1995-2006 and the
simulation period was 2007-2010.

As a process-based model, wmpy-power utilizes time series of channel flow and reservoir storage
to account for the non-stationarity of hydropower generation arising from uncertainties in
hydrology and the non-linear effect of climate change on water management (Zhou et al.,
2018). The model is designed to simulate an entire region of hydropower facilities in bulk
where the details required to accurately simulate each facility are potentially incomplete, and
accounts for biases in the input timeseries by calibrating against hydropower observations.
Although it was designed for regional scale prediction with a focus on long-term infrastructure
planning, it also demonstrates commendable accuracy at the facility scale despite a tradeoff in
precision when compared to facility-specific models.

Turner & Voisin (2022) provide a review of the landscape of hydropower models used at large
spatial scales. Physics-based models such as Hydrogenerate (Mitra et al., 2021) require more
specific details on turbine characteristics and plant design to achieve high accuracy, which
are not always widely available. Statistical models such as WRES (Kao, S.-C. et al., 2016)
directly correlate runoff with hydropower generation but may overlook the complex interactions
arising from human adaptive management of water availability and and hydropower production.
wmpy-power fills this gap between the physics-based and statistical paradigms.
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Ongoing research

Active research is underway utilizing wmpy-power as part of a one-way coupled modeling chain
from hydrology to river routing to reservoir operations to hydropower. The mosartwmpy model
(Thurber et al., 2021; Voisin et al., 2013) routes runoff through a river network with detailed
water management rules (Turner et al., 2021), providing flow and storage information to
wmpy-power. Zhou et al. (2023) investigate the compounding effects of climate and model
uncertainty in multi-model assessments of hydropower. Kao et al. (2022) provide monthly
hydropower projections for hydropower facilities in the United States under climate and model
uncertainties as part of the United States Department of Energy (US DOE) Secure Water Act.
Broman et al. (2024) examine regional changes in projected hydropower availability across the
United States for a high-population, high-warming socio-economic climate scenario.
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