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Summary
Conditional cumulative distribution functions (CDFs), conditional probability density functions
(PDFs), and derivatives thereof, are important parameters of interest in statistics, econometrics,
and other data science disciplines. The package lpcde implements new estimation and inference
methods for conditional CDFs, conditional PDFs, and derivatives thereof, employing the kernel-
based local polynomial smoothing approach introduced in Cattaneo et al. (2024a).

The package lpcde offers data-driven (pointwise and uniform) estimation and inference methods
for conditional CDFs, conditional PDFs, and derivatives thereof, which are automatically valid
at both interior and boundary points of the support of the outcome and conditioning variables.
For point estimation, the package offers mean squared error optimal bandwidth selection and
associated optimal mean square and uniform point estimators. For inference, the package offers
valid confidence intervals and confidence bands based on robust bias-correction techniques
(Calonico et al., 2018, 2022). Finally, these statistical procedures can be easily used for
visualization and graphical presentation of smooth estimates of conditional CDFs, conditional
PDFs, and derivative thereof, with custom ggplot (Wickham, 2016) commands built for the
package.

This package is currently the only open source implementation of an estimator offering
boundary adaptive, data-driven conditional density estimation with robust bias-corrected
pointwise confidence interval and uniform confidence band constructions, providing users with
statistical tools to better understand the reliability of their empirical analysis. A detailed
tutorial, replication files, and other information on how to use the package can be found
in the GitHub repository and through the CRAN repository. See also the lpcde package
website (https://nppackages.github.io/lpcde/) and the companion arXiv article (Cattaneo et
al., 2024b) for additional methodological information and numerical results.

Statement of need
Wand & Jones (1995), Fan & Gijbels (1996), Simonoff (2012), and Scott (2015) give textbook
introductions to kernel-based density and local polynomial estimation and inference methods.
The core idea underlying the estimator implemented in lpcde is to use kernel-based local
polynomial smoothing methods to construct an automatic boundary adaptive estimator for
conditional CDFs, conditional PDFs, and derivatives thereof. The estimator implemented
in this package consists of two steps. The first step estimates the conditional distribution
function using standard local polynomial regression methods, and the second step applies
local polynomial smoothing to the (non-smooth) local polynomial conditional CDF estimate
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from the first step to obtain a smooth estimate of the conditional CDF, conditional PDF, and
derivatives thereof.

A distinct advantage of this estimation method over existing ones is its boundary adaptivity
for a possibly unknown compact support of the data. Furthermore, the estimator has a simple
closed form representation, which leads to easy and fast implementation. Unlike other boundary
adaptive procedures, the estimation procedures implemented in the package lpcde do not
require pre-processing of data, and thus avoid the challenges of hyper-parameter tuning: only
one bandwidth parameter needs to be selected for implementation. See Cattaneo et al. (2024a)
and Cattaneo et al. (2024b) for more details.

Comparing and contrasting existing toolsets
The package lpcde contributes to a small set of open source statistical software packages
implementing estimation and inference methods for conditional CDF, conditional PDF, and
derivatives thereof. More specifically, we identified three R packages, hdrcde (Hyndman et
al., 2021), haldensify (Hejazi et al., 2022), and np (Hayfield & Racine, 2008), and one
Python package, cde (Rothfuss et al., 2019), which provide related methodology. There are
no open source Stata packages that implement comparable estimation and inference methods.
The table below summarizes some of the main differences between those other packages
and lpcde. Notably, lpcde is the only package available that provides both pointwise and
uniform uncertainty quantification, in addition to producing boundary adaptive mean square
and uniformly optimal point estimates via data-driven, optimal tuning parameter selection.
Furthermore, the lpcde package produces proper conditional density estimates that are non-
negative and integrate to one. These features are unique contributions of the package to the R

toolkit and, more broadly, to the open source statistical community.
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hdrcde R x x x x x x ✓
np R x x x ✓ x x ✓
haldensify R x x x ✓ x x ✓
cde Python x x x x x x ✓
lpcde R ✓ ✓ ✓ ✓ ✓ ✓ ✓
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