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Summary
Automated detection of acoustic signals is crucial for effectively monitoring vocal animals
and their habitats across large spatial and temporal scales. Recent advances in deep learning
have made high-performance automated detection approaches accessible to more practitioners.
However, there are few deep learning approaches that can be implemented natively in R. The
‘torch for R’ ecosystem has made the use of convolutional neural networks (CNNs) accessible for
R users. Here, we provide an R package and workflow to use CNNs for automated detection and
classification of acoustics signals from passive acoustic monitoring data. We provide examples
using data collected in Sabah, Malaysia. The package provides functions to create spectrogram
images from labeled data, compare the performance of different CNN architectures, deploy
trained models over directories of sound files, and extract embeddings from trained models.
The R programming language remains one of the most commonly used languages among
ecologists, and we hope that this package makes deep learning approaches more accessible
to this audience. In addition, these models can serve as important benchmarks for future
automated detection work.

Statement of need

Passive acoustic monitoring
We are in a biodiversity crisis, and there is a great need for the ability to rapidly assess
biodiversity in order to understand and mitigate anthropogenic impacts. One approach that
can be especially effective for monitoring of sound-producing yet cryptic animals is the use
of passive acoustic monitoring (Gibb et al., 2018), a technique that relies on autonomous
acoustic recording units. PAM allows researchers to monitor acoustically active animals and
their habitats at temporal and spatial scales that are impossible to achieve using only human
observers. Interest in use of PAM in terrestrial environments has increased substantially in
recent years (Sugai et al., 2019), due to the reduced price of autonomous recording units and
improved battery life and data storage capabilities. However, the use of PAM often leads to
the collection of terabytes of data that is time- and cost-prohibitive to analyze manually.

Automated detection
Automated detection for PAM data refers to identifying the start and stop time of signals
of interest within a longer sound recording (Stowell, 2022). Some of the early non-deep
learning approaches for the automated detection of acoustic signals in terrestrial PAM data
include binary point matching (Katz et al., 2016), spectrogram cross-correlation (Balantic &
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Donovan, 2020), or the use of a band-limited energy detector and subsequent classifier, such
as support vector machine (Clink et al., 2023; Kalan et al., 2015). Recent advances in deep
learning have revolutionized image and speech recognition (LeCun et al., 2015), with important
cross-over for the analysis of PAM data. Traditional approaches to machine learning relied
heavily on feature engineering, since early machine learning algorithms required a reduced set
of representative features that were manually chosen by researchers, such as features estimated
from the spectrogram.

Deep learning does not require feature engineering (Stevens et al., 2020), as the algorithms
include a step that identifies relevant features from the input. This can lead to faster
development time and increased ability to represent complex patterns typically seen in image
and acoustic data. Convolutional neural networks (CNNs) — one of the most widely used deep
learning algorithms—are useful for processing data that have a ‘grid-like topology’, such as
image data that can be considered a 2-dimensional grid of pixels (Goodfellow et al., 2016). The
‘convolutional’ layer learns the feature representations of the inputs; these convolutional layers
consist of a set of filters, which are two-dimensional matrices of numbers, and the primary
parameter is the number of filters (Gu et al., 2018). If training data are scarce, overfitting may
occur as representations of images tend to be large with many variables (LeCun et al., 1995).

Transfer learning
Training deep learning models generally requires a large amount of training data and substantial
computing resources. Transfer learning is an approach wherein the architecture of a pre-trained
CNN (which is generally trained on a very large dataset) is applied to a new classification
problem. For example, CNNs trained on the ImageNet dataset of > 1 million images (Deng et
al., 2009) such as ResNet have been applied to automated detection/classification of primate
and bird species from PAM data (Dufourq et al., 2022; Ruan et al., 2022). Generally, very few
practitioners train a CNN from scratch, and there are two common approaches for transfer
learning. The first option is to use the CNN as a feature extractor, and train only the last
classification layer. The second option is known as ‘fine-tuning’, where instead of initializing a
neural network with random weights, the initialization is done using the pre-trained network.
Using these pre-trained weights is valuable because the model has already learned useful feature
representations (Takhirov, 2021). Both approaches require substantially less computing power
than training from scratch. The functions in the ‘gibbonNetR’ package allow users to train
models using both types of transfer learning.

State of the field
The two most popular open-source programming languages are R and Python (Scavetta &
Angelov, 2021). Python has surpassed R in terms of overall popularity, but R remains an
important language for the life sciences (Lawlor et al., 2022). ‘Keras’ (Chollet & others, 2015),
‘PyTorch’ (Paszke et al., 2019) and ‘Tensorflow’ (Martín Abadi et al., 2015) are some of the
more popular neural network libraries; these libraries were all initially developed for the Python
programming language. One of the earliest implementations of automated detection using
R was the ‘monitoR’ package, which included functions for template detection (Katz et al.,
2016). The ‘warbleR’ package included functions for energy-based detection, which identifies
signals of interest in a certain frequency range above specified energy thresholds (Araya-Salas
& Smith-Vidaurre, 2017). The ‘gibbonR’ package combined energy-based detection with
traditional machine learning classification (Clink & Klinck, 2019).

Until recently, deep learning implementations in R relied on the ‘reticulate’ package, which
served as an interface to Python (Ushey et al., 2022). For example, early packages for
automated detection using deep learning in R used the ‘reticulate’ package Silva et al. (2022).
However, the recent release of the ‘torch for R’ ecosystem provides a framework based on
‘PyTorch’ that runs natively in R and has no dependency on Python (Falbel, 2023). Running
natively in R means more straightforward installation, and higher accessibility for users of
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the R programming environment. Keydana (2023) provides tutorials for image and audio
classification in the ‘torch for R’ ecosystem, and the functionality in ‘gibbonNetR’ relies heavily
on these tutorials. Variations of the transfer learning approaches included in this package
have already been implemented in Python (Dufourq et al., 2022). Recent advances have
used embeddings from audio classification models trained on bird songs for new classification
problems, and in many cases, these embeddings led to better performance than general audio
or image datasets (Ghani et al., 2023).

Overview
The package ‘gibbonNetR’ provides functions to create spectrogram images using the ‘seewave’
package (Sueur et al., 2008), and train and deploy six CNN architectures: AlexNet (Krizhevsky
et al., 2017), VGG16, VGG19 (Simonyan & Zisserman, 2014), ResNet18, ResNet50, and
ResNet152 (He et al., 2016)) trained on the ImageNet dataset (Deng et al., 2009). This
package has been used for automated detection of gunshots (Vu et al., 2024) and the calls of
two gibbon species (Clink, Kim, et al., 2024; Clink, Cross-Jaya, et al., 2024). The package
also has functions to evaluate model performance, deploy the highest-performing model over
a directory of sound files, and extract embeddings from trained models to visualize acoustic
data. We provide an example dataset that consists of labelled vocalizations of the loud calls
of four vertebrates (see detailed description below) from Danum Valley Conservation Area,
Sabah, Malaysia (Clink & Hamid Ahmad, 2024). Detailed usage instructions for ‘gibbonNetR’
can be found on the ‘gibbonNetR’ documentation site

Data summary
We include sound files and spectrogram images of five sound classes: great argus pheasant
(Argusianus argus) long calls (Clink et al., 2021), helmeted hornbills (Rhinoplax vigil), and
rhinoceros hornbills (Buceros rhinoceros) (Kennedy et al., 2023), female gibbons (Hylobates
funereus) and a catch-all “noise” category. The data come from two separate PAM arrays in
Danum Valley Conservation Area, Sabah, Malaysia. The training and validation data come
from a wide array of Swift autonomous recording units placed on ~750 m spacing (Clink et al.,
2023), and the test data come from a different, smaller array (~250 m spacing) within the
same area. We used a band-limited energy detector to identify signals that were 3-sec or longer
duration within the 400-1600 Hz range, and then a single observer (DJC) manually sorted the
detections into their respective categories (Clink et al., 2023).

Preparing training, validation, and test data
The package currently uses spectrogram images (Figure 1) to train and evaluate CNN model
performance, and we include a function that can be used to create spectrogram images from
Waveform Audio File Format (.wav) files. The .wav files should be organized into separate
folders, with each folder named according to the class label of the files it contains. We highly
recommend that your test data come from a different recording time and/or location to better
understand the generalizability of the models (Stowell, 2022).

Clink, & Ahmad. (2025). gibbonNetR: an R Package for the Use of Convolutional Neural Networks for Automated Detection of Acoustic Data.
Journal of Open Source Software, 10(110), 7250. https://doi.org/10.21105/joss.07250.

3

https://denajgibbon.github.io/gibbonNetR/
https://doi.org/10.21105/joss.07250


Figure 1: Spectrograms of training clips for CNNs. The x- and y-axis labels are not included when
training the model, so are not shown here. The duration of the clips is variable, and the frequency range
is 0.4-1.6 kHz.

Model training
The package currently allows for the training of six different CNN architectures (‘alexnet’,
‘vgg16’, ‘vgg19’, ‘resnet18’, ‘resnet50’, or ‘resnet152’), and the user can specify if they want
to freeze the feature extraction layers or not. There is also the option to train a binary or
multi-class classifer.

Evaluate model performance
We can compare the performance of different CNN architectures (Figure 2). Using the
‘get_best_performance()’ function, we can evaluate the performance of different model
architectures on the test dataset for the specified class. We can calculate the best F1, precision,
and recall using the ‘caret’ package (Kuhn, 2008), and the area under the ROC (receiver
operating characteristic) curve using the ‘ROCR’ package (Sing et al., 2005), which is a
threshold or confidence independent metric that evaluates the classifier’s ability to discriminate
between positive and negative classes.

PerformanceOutput <- get_best_performance(

performancetables.dir =

performancetables.dir,

class = 'female.gibbon',

model.type = "multi",

Thresh.val = 0

)

PerformanceOutput$f1_plot
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Figure 2: Evaluating performance of pre-trained CNNs.

Extract embeddings
Embeddings from deep learning models can be used as features in unsupervised approaches,
with promising results for call repertoires (Best et al., 2023) and individual identity (Lakdari et
al., 2024). This package contains a function to use pre-trained CNNs to extract embeddings,
where the trained model path, along with test data location and target class are specified.
Depending on the research question, this output could be used to visualize true and false
positives from automated detection, or to explore differences in call types or potential number
of individuals in the dataset.

We can plot the unsupervised clustering results
In Figure 3, the top plot is a Uniform Manifold Approximation and Projection (UMAP) where
each point represents one call, and the colors indicate the original class label. The bottom plot
is the same UMAP plot, but with points colored based on cluster assignment by the ‘hdbscan’
algorithm (Hahsler et al., 2019).
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Figure 3: UMAP plot of embeddings from test data set colored by actual label (top) and unsupervised
cluster assignment (bottom).

Explore the unsupervised clustering results

For a specified target class we can calculate the Normalize Mutual Information score, which
provides a value between 0 and 1, indicating the match between cluster labels and actual labels.
We also create a confusion matrix using the ‘caret’ package (Kuhn, 2008), which returns the
results when we use the unsupervised clustering algorithm function ‘hdbscan’ (Hahsler et al.,
2019) to match the target class to the cluster with the largest number of observations of that
particular class.

Future directions
There have been huge advances in the fields of deep learning and automated detection for
PAM data in recent years. The approach presented in this package is one of the first to use
the ‘torch for R’ ecosystem and to employ automated detection using deep learning natively in
R. More recent approaches that use models that are explicitly trained on bioacoustics data,
such as BirdNET (Ghani et al., 2023), have been introduced. There is a huge need in the field
of bioacoustics to do benchmarking, wherein different model architectures and performance
are compared across diverse datasets. The methods presented here can provide important
benchmarks for future work and for understanding how and if deep learning advances improve
performance over more traditional methods. In addition, this package provides a comprehensive
suite of tools for processing, analyzing, and visualizing acoustic data, providing robust support
for tasks such as automated detection, feature extraction, classification, and data visualization,
which are critical for conservation work using PAM. The R package is available on Github,
where issues can be opened.

Clink, & Ahmad. (2025). gibbonNetR: an R Package for the Use of Convolutional Neural Networks for Automated Detection of Acoustic Data.
Journal of Open Source Software, 10(110), 7250. https://doi.org/10.21105/joss.07250.

6

https://github.com/DenaJGibbon/gibbonNetR
https://doi.org/10.21105/joss.07250


Ethical statement
The research presented here adhered to all local and international laws. Institutional approval
was provided by Cornell University (IACUC 2017–0098). Sabah Biodiversity Centre and the
Danum Valley Management Committee provided permission for the collection of acoustic
recordings.

Acknowledgments
We would like to thank the Sabah Biodiversity Centre and Danum Valley Conservation Area
for granting us permission to conduct research. We are incredibly grateful for the detailed
comments provided by Steffi LaZerte and Camille Desjonquères, which substantially improved
the package and documentation.

References
Araya-Salas, M., & Smith-Vidaurre, G. (2017). warbleR: An r package to streamline analysis

of animal acoustic signals. Methods in Ecology and Evolution, 8(2), 184–191. https:
//doi.org/10.1111/2041-210X.12624

Balantic, C., & Donovan, T. (2020). AMMonitor: Remote monitoring of biodiversity in an
adaptive framework with r. Methods in Ecology and Evolution, 11(7), 869877. https:
//doi.org/10.1111/2041-210X.13397

Best, P., Paris, S., Glotin, H., & Marxer, R. (2023). Deep audio embeddings for vocalisation
clustering. PLOS ONE, 18(7), 1–18. https://doi.org/10.1371/journal.pone.0283396

Chollet, F., & others. (2015). Keras. https://doi.org/10.1163/1574-9347_bnp_e612900

Clink, D. J., Cross-Jaya, H., Kim, J., Ahmad, A. H., Hong, M., Sala, R., Birot, H., Agger, C.,
Vu, T. T., Thi, H. N., Chi, T. N., & Klinck, H. (2024). Benchmarking for the automated
detection and classification of southern yellow-cheeked crested gibbon calls from passive
acoustic monitoring data. bioRxiv. https://doi.org/10.1101/2024.08.17.608420

Clink, D. J., Groves, T., Ahmad, A. H., & Klinck, H. (2021). Not by the light of the moon:
Investigating circadian rhythms and environmental predictors of calling in bornean great
argus. Plos One, 16(2), e0246564. https://doi.org/10.1371/journal.pone.0246564

Clink, D. J., & Hamid Ahmad, A. (2024). A labelled dataset of the loud calls of four vertebrates
collected using passive acoustic monitoring in malaysian borneo. https://doi.org/10.5281/
zenodo.14213067

Clink, D. J., Kier, I., Ahmad, A. H., & Klinck, H. (2023). A workflow for the automated
detection and classification of female gibbon calls from long-term acoustic recordings.
Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1071640

Clink, D. J., Kim, J., Cross-Jaya, H., Ahmad, A. H., Hong, M., Sala, R., Birot, H., Agger,
C., Vu, T. T., Thi, H. N., & others. (2024). Automated detection of gibbon calls from
passive acoustic monitoring data using convolutional neural networks in the” torch for r”
ecosystem. arXiv Preprint arXiv:2407.09976. https://doi.org/10.48550/arXiv.2407.09976

Clink, D. J., & Klinck, H. (2019). gibbonR: An r package for the detection and classification
of acoustic signals. arXiv Preprint arXiv:1906.02572. https://doi.org/10.48550/arXiv.1906.
02572

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. 248255. https://doi.org/10.1109/cvpr.2009.5206848

Dufourq, E., Batist, C., Foquet, R., & Durbach, I. (2022). Passive acoustic monitoring of

Clink, & Ahmad. (2025). gibbonNetR: an R Package for the Use of Convolutional Neural Networks for Automated Detection of Acoustic Data.
Journal of Open Source Software, 10(110), 7250. https://doi.org/10.21105/joss.07250.

7

https://doi.org/10.1111/2041-210X.12624
https://doi.org/10.1111/2041-210X.12624
https://doi.org/10.1111/2041-210X.13397
https://doi.org/10.1111/2041-210X.13397
https://doi.org/10.1371/journal.pone.0283396
https://doi.org/10.1163/1574-9347_bnp_e612900
https://doi.org/10.1101/2024.08.17.608420
https://doi.org/10.1371/journal.pone.0246564
https://doi.org/10.5281/zenodo.14213067
https://doi.org/10.5281/zenodo.14213067
https://doi.org/10.3389/fevo.2023.1071640
https://doi.org/10.48550/arXiv.2407.09976
https://doi.org/10.48550/arXiv.1906.02572
https://doi.org/10.48550/arXiv.1906.02572
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.21105/joss.07250


animal populations with transfer learning. Ecological Informatics, 70, 101688. https:
//doi.org/10.1016/j.ecoinf.2022.101688

Falbel, D. (2023). Luz: Higher level ’API’ for ’torch’. https://doi.org/10.32614/CRAN.
package.luz

Ghani, B., Denton, T., Kahl, S., & Klinck, H. (2023). Global birdsong embeddings enable
superior transfer learning for bioacoustic classification. Scientific Reports, 13(1), 22876.
https://doi.org/10.1038/s41598-023-49989-z

Gibb, R., Browning, E., Glover-Kapfer, P., & Jones, K. E. (2018). Emerging opportunities
and challenges for passive acoustics in ecological assessment and monitoring. Methods in
Ecology and Evolution. https://doi.org/10.1111/2041-210X.13101

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G.,
Cai, J., & others. (2018). Recent advances in convolutional neural networks. Pattern
Recognition, 77, 354377. https://doi.org/10.1016/j.patcog.2017.10.013

Hahsler, M., Piekenbrock, M., & Doran, D. (2019). dbscan: Fast density-based clustering with
R. Journal of Statistical Software, 91(1), 1–30. https://doi.org/10.18637/jss.v091.i01

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
770778. https://doi.org/10.1109/cvpr.2016.90

Kalan, A. K., Mundry, R., Wagner, O. J. J., Heinicke, S., Boesch, C., & Kühl, H. S. (2015).
Towards the automated detection and occupancy estimation of primates using passive
acoustic monitoring. Ecological Indicators, 54(July 2015), 217226. https://doi.org/10.
1016/j.ecolind.2015.02.023

Katz, J., Hafner, S. D., & Donovan, T. (2016). Assessment of error rates in acoustic
monitoring with the r package monitoR. Bioacoustics, 25(2), 177196. https://doi.org/10.
1080/09524622.2015.1133320

Kennedy, A. G., Ahmad, A. H., Klinck, H., Johnson, L. M., & Clink, D. J. (2023). Evidence
for acoustic niche partitioning depends on the temporal scale in two sympatric bornean
hornbill species. Biotropica, 55(2), 517–528. https://doi.org/10.1111/btp.13205

Keydana, S. (2023). Deep learning and scientific computing with r torch. CRC Press.
https://doi.org/10.1201/9781003275923

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6), 8490. https://doi.
org/10.1145/3065386

Kuhn, M. (2008). Caret package. Journal of Statistical Software, 28(5), 126. https:
//doi.org/10.18637/jss.v028.i05

Lakdari, M. W., Ahmad, A. H., Sethi, S., Bohn, G. A., & Clink, D. J. (2024). Mel-frequency
cepstral coefficients outperform embeddings from pre-trained convolutional neural networks
under noisy conditions for discrimination tasks of individual gibbons. Ecological Informatics,
80, 102457. https://doi.org/10.1016/j.ecoinf.2023.102457

Lawlor, J., Banville, F., Forero-Muñoz, N.-R., Hébert, K., Martínez-Lanfranco, J. A., Rogy,
P., & MacDonald, A. A. M. (2022). Ten simple rules for teaching yourself R. PLOS
Computational Biology, 18(9), e1010372. https://doi.org/10.1371/journal.pcbi.1010372

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
https://doi.org/10.1038/nature14539

LeCun, Y., Bengio, Y., & others. (1995). Convolutional networks for images, speech, and time
series. In The handbook of brain theory and neural networks (Vol. 3361, p. 1995).

Clink, & Ahmad. (2025). gibbonNetR: an R Package for the Use of Convolutional Neural Networks for Automated Detection of Acoustic Data.
Journal of Open Source Software, 10(110), 7250. https://doi.org/10.21105/joss.07250.

8

https://doi.org/10.1016/j.ecoinf.2022.101688
https://doi.org/10.1016/j.ecoinf.2022.101688
https://doi.org/10.32614/CRAN.package.luz
https://doi.org/10.32614/CRAN.package.luz
https://doi.org/10.1038/s41598-023-49989-z
https://doi.org/10.1111/2041-210X.13101
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.18637/jss.v091.i01
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1016/j.ecolind.2015.02.023
https://doi.org/10.1016/j.ecolind.2015.02.023
https://doi.org/10.1080/09524622.2015.1133320
https://doi.org/10.1080/09524622.2015.1133320
https://doi.org/10.1111/btp.13205
https://doi.org/10.1201/9781003275923
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1016/j.ecoinf.2023.102457
https://doi.org/10.1371/journal.pcbi.1010372
https://doi.org/10.1038/nature14539
https://doi.org/10.21105/joss.07250


Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg
S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Jia, Y., Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, … Xiaoqiang Zheng. (2015). TensorFlow: Large-scale machine learning
on heterogeneous systems. https://doi.org/10.48550/arXiv.1605.08695

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library (p. 80248035). Curran Associates,
Inc. https://doi.org/10.48550/arXiv.1912.01703

Ruan, W., Wu, K., Chen, Q., & Zhang, C. (2022). ResNet-based bio-acoustics presence
detection technology of hainan gibbon calls. Applied Acoustics, 198, 108939. https:
//doi.org/10.1016/j.apacoust.2022.108939

Ruff, Z. J., Lesmeister, D. B., Appel, C. L., & Sullivan, C. M. (2021). Workflow and
convolutional neural network for automated identification of animal sounds. Ecological
Indicators, 124, 107419. https://doi.org/10.1016/j.ecolind.2021.107419

Scavetta, R. J., & Angelov, B. (2021). Python and r for the modern data scientist. O’Reilly
Media, Inc. https://doi.org/10.18637/jss.v103.b02

Silva, B., Mestre, F., Barreiro, S., Alves, P. J., & Herrera, J. M. (2022). soundClass: An
automatic sound classification tool for biodiversity monitoring using machine learning.
Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13964

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXiv Preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556

Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005). ROCR: Visualizing classifier
performance in r. Bioinformatics, 21(20), 7881. https://doi.org/10.1093/bioinformatics/
bti623

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep Learning with PyTorch. Simon;
Schuster.

Stowell, D. (2022). Computational bioacoustics with deep learning: a review and roadmap.
PeerJ, 10, e13152. https://doi.org/10.7717/peerj.13152

Sueur, J., Aubin, T., & Simonis, C. (2008). Seewave: A free modular tool for sound analysis and
synthesis. Bioacoustics, 18, 213–226. https://doi.org/10.1080/09524622.2008.9753600

Sugai, L. S. M., Silva, T. S. F., Ribeiro, J. W., & Llusia, D. (2019). Terrestrial passive acoustic
monitoring: Review and perspectives. BioScience, 69(1), 1525. https://doi.org/10.1093/
biosci/biy147

Takhirov, Z. (2021). Quantized transfer learning tutorial. https://pytorch.org/tutorials/
intermediate/quantized_transfer_learning_tutorial.html

Ushey, K., Allaire, J. J., & Tang, Y. (2022). Reticulate: Interface to ’python’. https:
//doi.org/10.32614/CRAN.package.reticulat

Vu, T. T., Phan, D. V., Le, T. S., & Clink, D. J. (2024). Investigating hunting in a protected
area in southeast asia using passive acoustic monitoring with mobile smartphones and
transfer learning. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2024.112501

Clink, & Ahmad. (2025). gibbonNetR: an R Package for the Use of Convolutional Neural Networks for Automated Detection of Acoustic Data.
Journal of Open Source Software, 10(110), 7250. https://doi.org/10.21105/joss.07250.

9

https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1016/j.apacoust.2022.108939
https://doi.org/10.1016/j.apacoust.2022.108939
https://doi.org/10.1016/j.ecolind.2021.107419
https://doi.org/10.18637/jss.v103.b02
https://doi.org/10.1111/2041-210X.13964
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1093/bioinformatics/bti623
https://doi.org/10.1093/bioinformatics/bti623
https://doi.org/10.7717/peerj.13152
https://doi.org/10.1080/09524622.2008.9753600
https://doi.org/10.1093/biosci/biy147
https://doi.org/10.1093/biosci/biy147
https://pytorch.org/tutorials/intermediate/quantized_transfer_learning_tutorial.html
https://pytorch.org/tutorials/intermediate/quantized_transfer_learning_tutorial.html
https://doi.org/10.32614/CRAN.package.reticulat
https://doi.org/10.32614/CRAN.package.reticulat
https://doi.org/10.1016/j.ecolind.2024.112501
https://doi.org/10.21105/joss.07250

	Summary
	Statement of need
	Passive acoustic monitoring
	Automated detection
	Transfer learning
	State of the field

	Overview
	Data summary
	Preparing training, validation, and test data
	Model training
	Evaluate model performance
	Extract embeddings
	We can plot the unsupervised clustering results
	Explore the unsupervised clustering results


	Future directions
	Ethical statement
	Acknowledgments
	References

