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Summary
The flow of Antarctic ice shelves is controlled by their viscosity structure, which cannot be
directly measured at the continental scale. Misrepresenting viscosity in ice-dynamics simulations
can lead to imprecise forecasts of ice sheet mass loss into the oceans and its consequential
impact on global sea-level rise. With the continent-wide remote-sensing data available over the
past decades, the viscosity of the ice shelves can be inferred by solving an inverse problem. We
present DIFFICE_jax: a DIFFerentiable solver using physics-informed neural networks (PINNs)
(Raissi et al., 2019) for data assimilation and inverse modeling of ICE shelves written in JAX.
This Python package converts discretized remote-sensing data into meshless and differentiable
functions, and infers the viscosity profile by directly solving the Shallow Shelf Approximation
(SSA) equations for ice shelves. The inversion algorithm is implemented in JAX (Bradbury
et al., 2018). The DIFFICE_jax package includes several advanced features beyond vanilla
PINNs algorithms, including collocation points resampling, non-dimensionalization of data and
equations, extended-PINNs (XPINNs) (Jagtap & Karniadakis, 2020), and viscosity exponential
scaling function, which are essential for accurate inversion. The package is designed to be
user-friendly and accessible for beginners. The GitHub repository also provides tutorial examples
with Colab notebooks for users at different levels to reproduce the results and modify the code
for their specific problems of interest.

Statement of need
One of the unsolved questions in the cryosphere, or the broader field of geophysics, is how to
uncover the hidden physical properties of various geophysical flows on Earth, such as ice-shelf
flows (Millstein et al., 2022; Ranganathan & Minchew, 2024). Ice shelves are the floating
extensions of grounded ice sheet that play a critical role in slowing ice discharging into the
ocean, mitigating the global sea level rise. A crtical physical properties required to predict ice
dynamics is the effective ice viscosity. However, continent-wide in-situ measurement of the
viscosity is challenging if not impossible. Instead, with high-resolution remote-sensing data
available for both ice-shelf velocity (𝑢, 𝑣) and thickness ℎ across Antarctica, effective viscosity
𝜇 can be inferred via solving an inverse problem constrained by the SSA equations (Douglas R.
MacAyeal, 1989).

Conventional method for solving inverse problems in glaciology includes the control method,
or called the adjoint method (Barnes et al., 2021; Fürst et al., 2015; Goldberg & Sergienko,
2011; Douglas R. MacAyeal, 1993; Mathieu Morlighem et al., 2010; M. Morlighem et al., 2013;
Perego et al., 2014; Vieli & Payne, 2003), which is a PDE-constraint optimization method that
requires deriving extra adjoint equations (Douglas R. MacAyeal, 1993; M. Morlighem et al.,
2013). Data used in inverse problems often contains noise. Thus, the adjoint method requires
additional regularization techniques to prevent error propagation. In contrast, neural networks
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(NN) can inherently de-noise the data while solving the inverse problem (Iwasaki & Lai, 2023;
Riel & Minchew, 2023; Wang et al., 2022) without regularization terms in the cost function.
That said, users should be careful about the NN’s tendency to miss high-frequency signals
due to their spectral biases (Rahaman et al., 2019; Xu et al., 2020) which can be mitigated
by XPINNs (Jagtap & Karniadakis, 2020). Moreover, the solver itself is differentiable; the
gradient of the loss function with respect to the NN parameters are calculated via automatic
differentiation (AD). This avoids the tedious efforts of writing the adjoint and is particularly
advantageous when exploring new PDEs like the anisotropic equations. Benefits of AD for
glaciological inverse problems are also shown in other deep-learning based emulators (Jouvet
et al., 2022; Jouvet, 2023; Jouvet & Cordonnier, 2023).

The DIFFICE_jax package supports the direct use of thickness data from radar profiles available
only at flight lines as PINN predicts the complete thickness profile, in addition to the viscosity
profile, via physics-informed interpolation. In addition, the outputs of PINNs (velocity, thickness,
and viscosity fields) are continuous functions parameterized by a fixed number of weights
and biases, requiring less memory than the output of classical methods with discretized grid
points when higher resolutions and precision are demanded (Wang & Lai, 2024). Finally, the
DIFFICE_jax package, along with other deep-learning-based solver for ice-dynamics (Bolibar
et al., 2023; Brinkerhoff et al., 2021; Cheng et al., 2024; He et al., 2023; Iwasaki & Lai,
2023; Jouvet et al., 2022; Jouvet, 2023; Jouvet & Cordonnier, 2023; Riel et al., 2021; Riel &
Minchew, 2023; Wang et al., 2022), leverages GPUs for computational speedup.

Note that off-the-shelf PINNs code are not adequate for accurately inferring effective viscosity
𝜇 from the governing equations and large-scale real-world data. Advanced algorithm features
summarized below are all essential for the success of viscosity inversion via PINNs. The
package provides comprehensive details of the key algorithms involved, including comments
and examples, enabling users to bypass substantial hyper-parameter tuning.

Algorithm features
Key features of DIFFICE_jax that go beyond off-the-shelf PINNs, and the necessity of these
features to ensure the success and robustness of large-scale viscosity inference are explained
below:

(1) Data and equation normalization/non-dimensionalization: Proper training of NNs requires
both input and output of the NN to be normalized. However, the values of observational data
of ice velocity and thickness differ by several order of magnitude in their original units. The
DIFFICE_jax package provides the algorithm that can automatically normalize the observational
data and derive normalized SSA equations for the training.

(2) Optimal setting of equation weight: The cost function of PINNs involves two terms: the
data loss ℒ𝑑 and the equation loss ℒ𝑒. The weighting pre-factors of the data and equation
loss are optimally set in the package to enure effective convergence of training loss.

(3) Design of NNs to enforce positive-definiteness: Considering that the effective viscosity 𝜇
is positive with large spatial variation within the ice shelf, we introduce the viscosity expression
as

𝜇 = exp(NN),

where NN𝜇 is a fully-connected network for 𝜇. This setting ensures the positive-definiteness
of the inferred viscosity and enhance the training to capture the large-varying viscosity profile
with high accuracy.

(4) Residual-based re-sampling of collocation points during training: Due to errors and noise,
PINN training with observational data often “cheats”, where the networks overfit the training
data (Cowen-Breen et al., 2024; Wang et al., 2022). To prevent the issue, the DIFFICE_jax
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package uses residual-based re-sampling scheme during training (Daw et al., 2022; Lu et al.,
2021), where more training data and collocation points are sampled in the area with large
training residue.

(5) Extended-PINNs (XPINNs) for large ice shelve: Regular PINN training with a single
network cannot capture the rich spatial variation of large ice shelves, such as Ross. The
DIFFICE_jax package adopts the approach of extended PINNs (XPINNs) (Jagtap & Karniadakis,
2020) for studying large ice shelves. This method divides the training domains into several
sub-regions, with different networks assigned to each. Detailed description of XPINNs are
provided in the doc folder of the GitHub repository.

(6) Inversion of anisotropic viscosity: Prior studies have shown that the viscosity of Antarctica
Ice Shelves could be anisotropic (Wang et al., 2025). The DIFFICE_jax package involves the
first algorithm designed to infer anisotropic viscosity. The governing equations, associated
boundary conditions, and the cost function for inferring anisotropic viscosity are described in
the docs folder.

Figure 1: PINN setup. (a) The structure and workflow of physics-informed neural networks (PINNs) for
inferring ice viscosity 𝜇 from (b) the remote-sensing data of ice velocity 𝑢, 𝑣 (Mouginot et al., 2019) and
thickness ℎ (M. Morlighem, 2020), and governing equations (𝑓1, 𝑓2, 𝑓3, and 𝑓4 = 0). The loss function
ℒ contains two terms, the data loss ℒ𝑑 and the equation loss ℒ𝑒. (c) Prediction of trained neural
network for velocity (𝑢, 𝑣) and thickness ℎ, which shows high agreement with the remote-sensing data
with relatively error around 1-3%. The inferred viscosity well satisfies the equation with small residue
values, indicating the accuracy of the inversion.
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