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Summary
PhenoFeatureFinder is designed to facilitate the analyses required to analyse quantitative
and/or progressive phenotypic- and omics data, and link those using Machine Learning with
the aim to identify causal features, in one package. It can be used for 1) evaluation and
visualisation of phenotype progression over multiple stages and between groups (e.g. treatments,
genotypes), 2) pre-processing of omics data, and 3) prediction of features that explain the
phenotypic classification. To facilitate usability, each step in the pipeline can also be performed
independently, hence has been assigned a class in the package (Figure 1). We provide an
example of implementation below that focuses on insect development through time and the
selection of metabolic features causal to the observed phenotype, but different input data
could be used, provided it has a similar structure. This could be any phenotype that is
scored in progressive stages over time. Also, PhenoFeatureFinder was developed initially with
metabolomics data, but users can evaluate its fit applying other types of omics data.
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Figure 1: Overview of the package, consisting of three classes that can be used separately or as a
workflow. Class 1: analysing and visualising the phenotype, Class 2: preprocessing and visualising omics
datasets, and Class 3: feature selection through a Machine Learning approach.

Statement of need
The analysis of developmental phenotypes can be challenging, due to the many variables involved
(e.g. time, developmental stages, replicates, treatments), especially for researchers whose
strength or interest does not lie in data analysis. The same goes for the pre-processing of omics
data and linking the omics data and developmental phenotypes. With PhenoFeatureFinder,
we aim to support such research by combining the necessary functionalities in one package
with easy to follow manuals and examples.

In R, the package drc is available for fitting dose-response curves (Ritz et al., 2015), offering
an extensive and versatile set of functionalities. However, for the purposes described here drc

poses some limitations, such as the options for custom pre-processing and analyses of multiple
experimental groups simultaneously. Here we implemented pre-processing steps and aimed to
decrease the amount of coding needed to obtain a fitted development curve.

Use case example
Plants interact with their (a)biotic environment through a range of specialised metabolites
and deal with pathogens and pest attack through constitutive or inducible production of those
defence molecules (Erb & Kliebenstein, 2020; García-Olmedo et al., 1998). High-throughput
“-omics” tools including (untargeted) metabolomics have been successfully implemented in
plant biology (Dalio et al., 2021), but the accompanying resistance phenotyping often lacks in
robustness (Song et al., 2021).

Proliferation of an insect population is affected by various factors, including the chemical
composition of the host, and/or the environment (Ma et al., 2022). In particular, host resistance
via hampered larval development is noteworthy, because reducing the speed at which larvae
reach the adult stage and produce offspring negatively affects pest-population development
(Maharijaya et al., 2019; Muema et al., 2016; Vengateswari et al., 2022). However, evaluating
larval development results in a complex dataset that is challenging to process. Developmental
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success is based on the number of larvae throughout various larval stages, as well as on the
speed of development.

To identify underlying mechanisms of resistance, the chemical or molecular composition of a
plant can be investigated. Proteins and metabolites are commonly analysed through untargeted
Mass-Spectrometry, yielding exhaustive profiles generally consisting of many thousands of
unannotated features. Often such data displays sparsity, i.e. missing values between datasets,
and a low sample-to-feature ratio, adding to the complexity of the analysis (Kortbeek et al.,
2021; Liebal et al., 2020). Tree-based Machine-Learning algorithms (e.g., random forest) are
suitable for the analysis of, and feature selection from, untargeted data (Liebal et al., 2020)
computing the contribution of each feature in the phenotypic classification.

Class I: PhenotypeAnalysis
A binary classification of plants into “resistant” or “susceptible” helps to extract relevant
features especially when threshold effects or sparsity (presence/absence) effects are at play.
Here we firstly assess performance over different developmental stages of larvae on different
host plants. The number of individuals in each stage at a given time is recorded. When plotted,
the cumulative data of these bioassays resemble a growth- or dose-response curve that can
be used to manually assign a binary phenotype (e.g., resistant/non-resistant), a resistance
classification used as input for FeatureSelection (Class 3).

To account for missing data when individuals that reached the final developmental stage are
removed from the experiment, we implemented an automated correction step. The count
data can be transformed to cumulative data to analyse the maximum of individuals that reach
each of the developmental stages. Next, the time to reach a specific stage can be compared
between treatments by fitting a 3-parameter log-logistic curve (Muse et al., 2021; Seefeldt et
al., 1995; Vliet & Ritz, 2013) to the cumulative data for each treatment, with the function:

𝑓(𝑥) = 𝑚
1 + exp(𝑠(log(𝑥) − log(𝑒50)))

where 𝑥 is time, 𝑚 is the upper limit (or maximum of individuals that developed to the stage
of interest), 𝑠 is the slope of the linear part of the curve and 𝑒50 is the EmT50 (the time
point at which 50% of the individuals have developed to the stage of interest). We added the
possibility to compare performance between treatments by fitting a curve with the function:

𝑓(𝑥) =
𝑎 𝑠
𝑚( 𝑥

𝑚)𝑠−1

1 + ( 𝑥
𝑚)𝑠

Here, 𝑥 is time, 𝑎 the area under the curve, 𝑠 is the shape of the curve and 𝑚 the median
time point. Both functions output a table with the model parameters, confidence intervals
and the model fit, together with a plot displaying the observed data and the fitted model. For
both functions it is possible to predict the potential maximum beyond the final experimental
measurements.

Class II: OmicsAnalysis
Untargeted omics results in large datasets that tend to contain background noise and unreliable
features. To clean the data, multiple filtering methods are implemented in the OmicsAnalysis

class, including the removal of contaminants present in blank samples, filtering to decrease
sparsity and other quality control steps. The structure of the data can subsequently be
visualised with a PCA and an UpSet plot.
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Class III: FeatureSelection
Combining the output of Classes 1 and 2, i.e. the binary phenotype classification and the
tidied untargeted metabolomics, FeatureSelection is set up to predict features that can
explain the phenotypic observation under study. This part of the pipeline was built as a
wrapper around the Python libraries scikit-learn and TPOT (Olson et al., 2016; Pedregosa
et al., 2011). The FeatureSelection wrapper is designed to select optimal pipelines for
data preprocessing and identification of the most suitable Machine Learning model. One
characteristic of metabolomics data is strongly correlated features (linear dependencies between
variables) that make it difficult to extract individual feature importance. Therefore, this method
implements a PCA as dimensionality reduction method before searching for the best fitting
pipeline. Finally, the importance of the Principal Components and their most related features
(high loadings) can be retrieved to select features with predicted importance to the phenotypic
classification.
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