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Summary
Xesn is a Python package that allows scientists to easily design Echo State Networks (ESNs)
for forecasting problems. ESNs are a Recurrent Neural Network architecture introduced by
Jaeger (2001) that are part of a class of techniques termed Reservoir Computing. One defining
characteristic of these techniques is that all internal weights are determined by a handful of
global, scalar parameters, thereby avoiding problems during backpropagation and reducing
training time significantly. Because this architecture is conceptually simple, many scientists
implement ESNs from scratch, leading to questions about computational performance. Xesn

offers a straightforward, standard implementation of ESNs that operates efficiently on CPU and
GPU hardware. The package leverages optimization tools to automate the parameter selection
process, so that scientists can reduce the time finding a good architecture and focus on using
ESNs for their domain application. Importantly, the package flexibly handles forecasting tasks
for out-of-core, multi-dimensional datasets, eliminating the need to write parallel programming
code. Xesn was initially developed to handle the problem of forecasting weather dynamics,
and so it integrates naturally with Python packages that have become familiar to weather
and climate scientists such as Xarray (Hoyer & Hamman, 2017). However, the software is
ultimately general enough to be utilized in other domains where ESNs have been useful, such
as in signal processing (Jaeger & Haas, 2004).

Statement of Need
ESNs are a conceptually simple Recurrent Neural Network architecture, leading many scientists
who use ESNs to implement them from scratch. While this approach can work well for low
dimensional problems, the situation quickly becomes more complicated when:

1. deploying the code on GPUs,
2. interacting with a parameter optimization algorithm in order to tune the model, and
3. parallelizing the architecture for higher dimensional applications.

Xesn is designed to address all of these points. Additionally, while there are some design
flexibilities for the ESN architectures, the overall interface is streamlined based on the parameter
and design impact study shown by Platt et al. (2022).
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GPU Deployment
At its core, xesn uses NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020) to perform
array based operations on CPUs. The package then harnesses the CPU/GPU agnostic code
capabilities afforded by CuPy (Okuta et al., 2017) to operate on GPUs.

Parameter Optimization
Although ESNs do not employ backpropagation to train internal weights, their behavior and
performance is highly sensitive to a set of 5 scalar parameters. Moreover, the interaction of
these parameters is often not straightforward, and it is therefore advantageous to optimize these
parameter values (Platt et al., 2022). Additionally, Platt et al. (2023) and Smith et al. (2023)
showed that adding invariant metrics to the loss function, like the leading Lyapunov exponent
or the Kinetic Energy spectrum, improved generalizability. As a generic implementation of these
metrics, xesn offers the capability to constrain the system’s Power Spectral Density during
parameter optimization in addition to a more traditional mean squared error loss function.

Xesn enables parameter optimization by integrating with the Surrogate Modeling Toolbox
(Bouhlel et al., 2020), which has a Bayesian optimization implementation. Xesn provides
a simple interface so that the user can specify all of the settings for training, parameter
optimization, and testing with a single YAML file. By doing so, all parts of the experiment are
more easily reproducible and easier to manage with scheduling systems like SLURM on HPC
environments or in the cloud.

Scaling to Higher Dimensions
It is typical for ESNs to use a hidden layer that is 𝒪(10 − 100) times larger than the input
and target space, so forecasting large target spaces quickly becomes intractable with a single
reservoir. To address this, Pathak et al. (2018) developed a parallelization strategy so that
multiple, semi-independent reservoirs make predictions of a single, high dimensional system.
This parallelization was generalized for multiple dimensions by Arcomano et al. (2020) and
Smith et al. (2023), the latter of which serves as the basis for xesn.

Xesn enables prediction for multi-dimensional systems by integrating its high level operations
with Xarray (Hoyer & Hamman, 2017). As with Xarray, users refer to dimensions based
on their named axes. Xesn parallelizes the core array based operations by using Dask (Dask
Development Team, 2016; Rocklin, 2015) to map them across available resources, from a
laptop to a distributed HPC or cloud cluster.

Existing Reservoir Computing Software
It is important to note that there is already an existing software package in Python for Reservoir
Computing, called ReservoirPy (Trouvain et al., 2020). To our knowledge, the purpose of
this package is distinctly different. The focus of ReservoirPy is to develop a highly generic
framework for Reservoir Computing, for example, allowing one to change the network node
type and graph structure underlying the reservoir, and allowing for delayed connections. On the
other hand, xesn is focused specifically on implementing ESN architectures that can scale to
multi-dimensional forecasting tasks. Additionally, while ReservoirPy enables hyperparameter
grid search capabilities via Hyperopt (Bergstra et al., 2013), xesn enables Bayesian optimization
as noted above.

Another ESN implementation is that of (Arcomano et al., 2020, 2022, 2023), available at
(Arcomano, 2023). The code implements ESNs in Fortran, and focuses on using ESNs for
hybrid physics-ML modeling.
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Computational Performance
Here we show brief scaling results in order to show how the standard (eager) xesn.ESN scales
with increasing hidden and input dimensions. Additionally, we provide some baseline results to
serve as guidance when configuring Dask to use the parallelized xesn.LazyESN architecture.
The scripts used to setup, execute, and visualize these scaling tests can be found here. For
methodological details on these two architectures, please refer to the methods section of the
documentation.

Standard (Eager) ESN Performance
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Figure 1: Wall time and peak memory usage for the standard ESN architecture for two different system
sizes (𝑁𝑢) and a variety of reservoir sizes (𝑁𝑟). Wall time is captured with Python’s time module, and
peak memory usage is captured with memory-profiler for the CPU runs and with NVIDIA Nsight Systems
for the GPU runs. Note that the peak memory usage for the GPU runs indicates GPU memory usage
only, since this is a typical bottleneck. The gray and black lines indicate the general trend in memory
usage during the CPU and GPU simulations, respectively. The empirically derived gray and black curves
are a function of the problem size, and are provided so users can estimate how much memory might be
required for their applications. The constants are as follows: 𝑎 = 250, 000 is ~3 times the total number
of samples used, 𝑏 = 20, 000 is the batch size, and 𝑐 = 8 ⋅ 109 is a conversion to GB.

For reference, in Figure 1 we show the wall time and peak memory usage required to train the
standard (eager) ESN architecture as a function of the input dimension 𝑁𝑢 and reservoir size
𝑁𝑟. We ran the scaling tests in the us-central-1c zone on Google Cloud Platform (GCP),
using a single c2-standard-60 instance to test the CPU (NumPy) implementation and a single
a2-highgpu-8g (i.e., with 8 A100 cards) instance to test the GPU (CuPy) implementation.
The training data was generated from the Lorenz96 model (Lorenz, 1996) with dimensions
𝑁𝑢 = {16, 256}, and we generated 80,000 total samples in the training dataset.

In the CPU tests, wall time scales quadratically with the reservoir size, while it is mostly
constant on a GPU. For this problem, it becomes advantageous to use GPUs once the reservoir
size is approximately 𝑁𝑟 = 8, 000 or greater. In both the CPU and GPU tests, memory scales
quadratically with reservoir size, although the increasing memory usage with reservoir size is
more dramatic on the CPU than GPU. This result serves as a motivation for our parallelized
architecture.

Parallel (Lazy) Architecture Strong Scaling Results
In order to evaluate the performance of the parallelized architecture, we take the Lorenz96
system with dimension 𝑁𝑢 = 256 and subdivide the domain into 𝑁𝑔 = {2, 4, 8, 16, 32} groups.
We then fix the problem size such that 𝑁𝑟 ∗ 𝑁𝑔 = 16, 000, so that the timing results reflect
strong scaling. That is, the results show how the code performs with increasing resources
on a fixed problem size, which in theory correspond to Amdahl’s Law (Amdahl, 1967). The
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training task and resources used are otherwise the same as for the standard ESN results shown
in Figure 1. We then create 3 different dask.distributed Clusters, testing:

1. Purely threaded mode (CPU only).
2. The relevant default “LocalCluster” (i.e., single node) configuration for our re-

sources. On the CPU resource, a GCP c2-standard-60 instance, the default
dask.distributed.LocalCluster has 6 workers, each with 5 threads. On the GPU
resource, a GCP a2-highgpu-8g instance, the default dask_cuda.LocalCUDACluster

has 8 workers, each with 1 thread.
3. A LocalCluster with 1 Dask worker per group. On GPUs, this assumes 1 GPU per

worker and we are able to use a maximum of 8 workers due to our available resources.
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Figure 2: Strong scaling results, showing speedup as a ratio of serial training time to parallel training
time as a function of number of groups or subdomains of the Lorenz96 system. Serial training time is
evaluated with 𝑁𝑢 = 256 and 𝑁𝑟 = 16, 000 with xesn.ESN from Figure 1, and parallel training time uses
xesn.LazyESN with the number of groups as shown. See text for a description of the different schedulers
used.

Figure 2 shows the strong scaling results of xesn.LazyESN for each of these cluster configura-
tions, where each point shows the ratio of the wall time with the standard (serial) architecture
to the lazy (parallel) architecture with 𝑁𝑔 groups. On CPUs, using 1 Dask worker process per
ESN group generally scales well, which makes sense because each group is trained entirely
independently.

On GPUs, the timing is largely determined by how many workers (GPUs) there are relative
to the number of groups. When the number of workers is less than the number of groups,
performance is detrimental. However, when there is at least one worker per group, the timing
is almost the same as for the single worker case, only improving performance by 10-20%. While
the strong scaling is somewhat muted, the invariance of wall time to reservoir size in Figure 1
and number of groups in Figure 2 means that the distributed GPU implementation is able to
tackle larger problems at roughly the same computational cost.
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