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Summary
AutoPDEx is free and open-source software for solving partial differential equations (PDEs)
based on the automatic code transformation capabilities of JAX (Bradbury et al., 2018). It
is designed to provide a modular, flexible, and extendable environment for solving boundary
and initial value problems, allowing seamless integration with machine learning algorithms and
GPU acceleration through the Accelerated Linear Algebra (XLA) compiler.

At its core, AutoPDEx includes a versatile solver module that supports algorithms such as
adaptive load stepping, Newton’s method, and nonlinear minimizers. The PDEs to be solved
and the chosen variational methods and solution spaces can be specified via user-defined
JAX-transformable functions. Pre-built models and ansatz functions are available in the
models and spaces modules. In addition to finite element methods, mesh-free approaches and
neural networks can be used as solution spaces. This flexibility makes AutoPDEx suitable for
researchers working at the intersection of numerical analysis and machine learning.

The implicit_diff module provides a wrapper to make the solution methods differentiable
through automatic implicit differentiation (Blondel et al., 2022). This allows adaptive load
stepping to be used in combination with arbitrary order sensitivity analyses in forward and
reverse mode. For solving linear systems, it integrates with high-performance external solvers
as, e.g., PARDISO (Schenk & Gärtner, 2004) and PETSc (Balay et al., 2019). Below, the
solution of some example test cases available in the documentation is depicted.

Statement of Need
The efficient and accurate solution of partial differential equations (PDEs) is a central task in
many scientific and engineering applications. Python has become a popular platform for PDE
solving due to its versatility and the availability of mature libraries such as FEniCS (Alnæs et
al., 2015) with dolfin-adjoint (Mitusch et al., 2019) for sensitivity analysis. However, many
existing tools rely on traditional numerical approaches and require manual implementation of
residuals and tangents, or use domain-specific symbolic manipulations.

AutoPDEx uses the code-to-code transformation library JAX to compute local derivatives
such as spatial gradients, as well as residual and tangent contributions, through automatic
differentiation. By leveraging automatic implicit differentiation, the entire solution procedure
can also be differentiated in a unified way. This and the modular structure of AutoPDEx
make it attractive for research applications in which having sensitivities is beneficial, e.g.,
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as in material parameter identification, topology optimization, uncertainty estimation, and
multi-scale analysis (Korelc & Wriggers, 2016). By building on JAX, AutoPDEx further enables
the smooth combination of numerical simulations with machine learning models from the JAX
ecosystem, for instance, those provided by Flax (Heek et al., 2024) and Equinox (Kidger &
Garcia, 2021). This capability allows incorporating data-driven approaches into traditional
simulation workflows.

The analysis in AutoPDEx can be used in combination with established tools like Gmsh
(Geuzaine & Remacle, 2009) for mesh generation and PyVista (Sullivan & Kaszynski, 2019)
or ParaView (Ahrens et al., 2005) for visualization, providing a comprehensive solution from
model preparation to analysis.
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