
wrenfold: Symbolic code generation for robotics
Gareth Cross 1

1 Independent Researcher, USA
DOI: 10.21105/joss.07303

Software
• Review
• Repository
• Archive

Editor: Sébastien Boisgérault
Reviewers:

• @ushu
• @abougouffa

Submitted: 18 August 2024
Published: 28 January 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Real-time robotic software systems often solve one or more numerical optimization problems.
For example, accurate estimates of past vehicle motion are typically obtained as the solution
of a non-linear optimization or filtering problem (Barfoot, 2024). Similarly, the behavior of an
autonomous system can be selected via a numerical optimization problem that reasons about
the relative merits of different future actions (Lynch & Park, 2021).

Problems of this form can be solved using packages like Google Ceres (Agarwal et al., 2023)
or GTSAM (Dellaert & GTSAM Contributors, 2022). These optimizers require that the user
provide a mathematical objective function and - in some instances - the derivatives of said
function with respect to the desired decision variables. In order to achieve real-time deadlines,
the optimization is usually implemented in a performant compiled language such as C++.

wrenfold is a framework that converts symbolic math expressions (written in Python) into
generated code in compiled languages (C++, Rust). The primary goals of the framework are:

• Bridge the gap between expressive prototyping of objective functions in symbolic form,
and the performant code required for real-time operation.

• Improve on existing symbolic code generation solutions by supporting a greater variety
and complexity of expressions.

Statement of need
Researchers and engineers working in robotics and related domains (eg. motion planning,
control theory, state estimation, computer vision) regularly implement numerical optimization
problems. This process presents a number of challenges:

• Robotic systems often feature non-trivial kinematics and dynamics. Describing the motion
or sensor models may involve reasoning about complex chains of 3D transformations.

• Many popular optimization methods require derivatives for the objective function. Man-
ually computing derivatives is tedious and error-prone, particularly in the presence of
complicated geometry or compounded transformations.

• Performant systems languages like C++ do not necessarily have syntax conducive to the
elegant expression of elaborate mathematical functions.

Symbolic code generation can help address these issues:

• Symbolic functions can be be easily composed in Python, and reasonably performant1
C++ implementations are obtained automatically. The developer time cost required to
experiment with different optimization parameterizations is thereby reduced.

• Correct derivatives require no additional work - they can be obtained directly from
the objective function via symbolic differentiation. Common terms that appear in

1A comparison with handwritten and auto-diff based implementations is accessible at https://wrenfold.org/
performance.html.

Cross. (2025). wrenfold: Symbolic code generation for robotics. Journal of Open Source Software, 10(105), 7303. https://doi.org/10.21105/joss.
07303.

1

https://orcid.org/0009-0008-3110-0078
https://doi.org/10.21105/joss.07303
https://github.com/openjournals/joss-reviews/issues/7303
https://github.com/wrenfold/wrenfold
https://doi.org/10.5281/zenodo.14723141
https://github.com/boisgera
https://orcid.org/0000-0003-4685-8099
https://github.com/ushu
https://github.com/abougouffa
https://creativecommons.org/licenses/by/4.0/
https://wrenfold.org/performance.html
https://wrenfold.org/performance.html
https://doi.org/10.21105/joss.07303
https://doi.org/10.21105/joss.07303

the objective function and its Jacobians are automatically de-duplicated by the code
generation step.

Compilable source code is a suitable output format because it is straightforward to integrate
into downstream projects. By customizing the code generation step, any number of additional
languages and development environments can be targeted. Generated functions can be applied
to a number of use cases, such as:

• Defining measurement expressions for a factor graph or Kalman filter.2
• Expressing terms in a motion planning or control optimization.3

Symbolic code generation has been shown to be an effective tool in robotics. For example,
the MATLAB symbolic code generation toolbox has been applied directly to motion planning
(Hereid & Ames, 2017). The open-source SymForce framework (Martiros & The Skydio
Autonomy Team, 2022) couples the SymEngine (Fernando, 2024) mathematical backend with
Python code generation utilities and mathematical primitives specific to robotics.4 wrenfold

draws inspiration from the design of SymForce, while aiming to support a greater variety and
complexity of functions. We improve on the concept with the following contributions:

• Symbolic functions may incorporate piecewise conditional statements - these produce
if-else logic in the resulting code. This enables a broader range of functions to be
generated.

• Emphasis is placed on ease of adaptability of the generated code. Math expressions are
simplified and converted into an abstract syntax tree (AST). Formatting of any element
of the AST (such as function signatures and types) can be individually customized by
defining a short Python method.

• Times for code generation are meaningfully reduced, thereby enabling more complex
expressions.

wrenfold aims to support researchers and engineers in robotics by bringing symbolic code
generation to a greater variety and complexity of optimization problems.

Design
Internally, wrenfold can be thought of as four distinct parts:

1. A symbolic math frontend implemented in C++ that exposes a Python interface. Pro-
grammers implement a Python function in order to specify the mathematical operations
they wish to generate.

2. The symbolic expression tree is converted into a flat intermediate representation (IR). The
IR is manipulated in order to eliminate common sub-expressions. Additional optimizations
can be performed at this stage - for example factorizing common terms out of sum-of-
product expressions.

3. An abstract syntax tree is built from the simplified IR. This representation is intended to
be generic, such that nearly any language can be emitted downstream.

4. A code generation step converts the AST into a compilable language like C++ or Rust.
This stage is easily customizable from Python.

2Examples of integrating wrenfold functions into Ceres and GTSAM are provided at https://github.com/
wrenfold/wrenfold-extra-examples.

3A toy example of a Model Predictive Control (MPC) algorithm that uses wrenfold is available at https:
//github.com/gareth-cross/cart-pole-mpc.

4SymForce has been deployed on production robots produced by Skydio, an American drone manufacturer
(Martiros, 2022).

Cross. (2025). wrenfold: Symbolic code generation for robotics. Journal of Open Source Software, 10(105), 7303. https://doi.org/10.21105/joss.
07303.

2

https://github.com/wrenfold/wrenfold-extra-examples
https://github.com/wrenfold/wrenfold-extra-examples
https://github.com/gareth-cross/cart-pole-mpc
https://github.com/gareth-cross/cart-pole-mpc
https://doi.org/10.21105/joss.07303
https://doi.org/10.21105/joss.07303

Figure 1: wrenfold system architecture

One of our design goals is to avoid burdening developers with long code generation times.
To that end, we implement the core library in C++. The memoization pattern is employed
throughout the symbolic backend in order to further improve performance. The fast backend
allows wrenfold to scale to larger expression trees than a plain Python implementation
(e.g. SymPy) would allow. wrenfold code generation times are also 20-100x faster than
SymForce on representative functions.5

The user-facing Python API is implemented using pybind11 (Jakob et al., 2016). While code
generators are written in C++, they can be inherited and overriden in Python. This facilitates
easy adaptation of the generated code to a particular project - for instance:

• Injecting custom types into the signature of generated methods. For example, emitting
code that interfaces with externally-provided geometry types like gtsam::Pose3 (Dellaert
& GTSAM Contributors, 2022).

• Overriding a core math function (eg. sin or cosh) in order to invoke a custom imple-
mentation.

• Customizing syntax in order to suit a particular compiler or language version.
• Adding an entirely new programming language to the list of possible targets.

Examples of the above behaviors can be found in the wrenfold project repository.

Usage Example
We proceed with a usage example illustrating how a developer might interact with wrenfold.
For the sake of brevity, this example is relatively simple. More realistic demonstrations can
be found in the project repository. The following code was generated with wrenfold v0.2.2

- the newest version at the time of this writing. A symbolic function is created by writing a
type-annotated Python function:

from wrenfold import code_generation, sym, type_annotations

5Based on a comparison of end-to-end code generation times of sample functions taken from https://github.
com/wrenfold/wrenfold-benchmarks. We compared wrenfold v0.2.2 and SymForce 0.9.0.

Cross. (2025). wrenfold: Symbolic code generation for robotics. Journal of Open Source Software, 10(105), 7303. https://doi.org/10.21105/joss.
07303.

3

https://github.com/wrenfold/wrenfold-benchmarks
https://github.com/wrenfold/wrenfold-benchmarks
https://doi.org/10.21105/joss.07303
https://doi.org/10.21105/joss.07303

def rotate_point(

p: type_annotations.Vector2,

theta: type_annotations.FloatScalar

):

"""Rotate a 2D point by the angle `theta`."""

c, s = sym.cos(theta), sym.sin(theta)

R = sym.matrix([(c, -s), (s, c)])

p_rotated = R * p

Produce the rotated point, and the 2x1 Jacobian with respect to `theta`.

return (

code_generation.OutputArg(p_rotated, name="p_out"),

code_generation.OutputArg(

sym.jacobian(p_rotated, [theta]), name="p_out_D_theta", is_optional=True)

)

Generate C++ code:

code = code_generation.generate_function(

rotate_point, generator=code_generation.CppGenerator())

Our example function accepts a 2D vector p, and rotates it by the angle 𝜃. The outputs
consist of the rotated point, and the Jacobian with respect to 𝜃. The type annotations Vector2
and FloatScalar specify the numeric types and dimensions of the input arguments. We also
annotate the output values to indicate how they should be returned. The equivalent generated
C++ function for rotate_point is:

#include <wrenfold/span.h>

template <typename Scalar, typename T0, typename T2, typename T3>

void rotate_point(const T0 &p, const Scalar theta, T2 &&p_out,

T3 &&p_out_D_theta) {

auto _p = wf::make_input_span<2, 1>(p);

auto _p_out = wf::make_output_span<2, 1>(p_out);

auto _p_out_D_theta = wf::make_optional_output_span<2, 1>(p_out_D_theta);

const Scalar v002 = theta;

const Scalar v003 = std::sin(v002);

const Scalar v001 = _p(1, 0);

const Scalar v007 = std::cos(v002);

const Scalar v006 = _p(0, 0);

const Scalar v012 = v003 * v006 + v001 * v007;

const Scalar v009 = v006 * v007 + -(v001 * v003);

if (static_cast<bool>(_p_out_D_theta)) {

_p_out_D_theta(0, 0) = -v012;

_p_out_D_theta(1, 0) = v009;

}

_p_out(0, 0) = v009;

_p_out(1, 0) = v012;

}

The generated C++ is intended to be maximally type agnostic. Vectors and matrices are
passed as generic types, such that a wide variety of linear algebra frameworks can be supported
at runtime.6 Note that common sub-expressions v009 and v012 have been extracted into
variables so that they may be reused.

6We provide instructions for adding support for third-party matrix libraries at: https://wrenfold.org/reference/
integrating_code. Support for Eigen is provided by default.

Cross. (2025). wrenfold: Symbolic code generation for robotics. Journal of Open Source Software, 10(105), 7303. https://doi.org/10.21105/joss.
07303.

4

https://wrenfold.org/reference/integrating_code
https://wrenfold.org/reference/integrating_code
https://doi.org/10.21105/joss.07303
https://doi.org/10.21105/joss.07303

Future Work
wrenfold is designed to be extensible. Future avenues for improvement include:

• Adding new target languages, for example shader code (GLSL/HLSL) or CUDA.
• Extending the list of built-in core math functions.
• Generalizing the symbolic expression tree to reason about matrix expressions (thereby

enabling vertorization of output code in some instances).

Resources
• GitHub repository: https://github.com/wrenfold/wrenfold
• Website: https://wrenfold.org

Acknowledgements
We acknowledge code contributions and feedback from: Himel Mondal, Anurag Makineni,
Rowland O’Flaherty, and Chao Qu.

References
Agarwal, S., Mierle, K., & The Ceres Solver Team. (2023). Ceres Solver (Version 2.2).

https://github.com/ceres-solver/ceres-solver

Barfoot, T. D. (2024). State estimation for Robotics. Cambridge University Press. https:
//doi.org/10.1017/9781316671528

Dellaert, F., & GTSAM Contributors. (2022). Borglab/gtsam (Version 4.2a8). Georgia Tech
Borg Lab. https://doi.org/10.5281/zenodo.5794541

Fernando, I. et. al. (2024). SymEngine. https://github.com/symengine/symengine

Hereid, A., & Ames, A. D. (2017, September). FROST: Fast Robot Optimization and
Simulation Toolkit. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). https://doi.org/10.1109/iros.2017.8202230

Jakob, W., Rhinelander, J., & Moldovan, D. (2016). pybind11 — Seamless operability between
C++11 and Python.

Lynch, K., & Park, F. C. (2021). Modern Robotics: Mechanics, planning, and Control.
Cambridge University Press. https://doi.org/10.1017/9781316661239

Martiros, H. (2022). Open-sourcing SymForce. In Skydio Blog RSS. Skydio. https://www.
skydio.com/blog/open-sourcing-symforce/

Martiros, H., & The Skydio Autonomy Team. (2022). SymForce: Symbolic Computation
and Code Generation for Robotics. Proceedings of Robotics: Science and Systems.
https://doi.org/10.15607/RSS.2022.XVIII.041

Cross. (2025). wrenfold: Symbolic code generation for robotics. Journal of Open Source Software, 10(105), 7303. https://doi.org/10.21105/joss.
07303.

5

https://github.com/wrenfold/wrenfold
https://wrenfold.org
https://github.com/ceres-solver/ceres-solver
https://doi.org/10.1017/9781316671528
https://doi.org/10.1017/9781316671528
https://doi.org/10.5281/zenodo.5794541
https://github.com/symengine/symengine
https://doi.org/10.1109/iros.2017.8202230
https://doi.org/10.1017/9781316661239
https://www.skydio.com/blog/open-sourcing-symforce/
https://www.skydio.com/blog/open-sourcing-symforce/
https://doi.org/10.15607/RSS.2022.XVIII.041
https://doi.org/10.21105/joss.07303
https://doi.org/10.21105/joss.07303

	Summary
	Statement of need
	Design
	Usage Example
	Future Work
	Resources
	Acknowledgements
	References

