The Journal of Open Source Software

DOI: 10.21105/joss.07308

Software
= Review @@
= Repository @
= Archive &7

Editor: Vissarion Fisikopoulos ¢
Reviewers:
= @saaikrishnan

= Qlouiseadennis

Submitted: 10 September 2024
Published: 15 March 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

DemeterWatch: A Java tool to detect Law of
Demeter violations in Java collections

Juan Pablo P. de Aquino® 'Y, José Fernando de M. Firmino ®2*, Diogo D.
Moreira'”, and Ricardo de S. Job!"

1 Instituto Federal de Educacdo Ciéncia e Tecnologia da Paraiba - IFPB, Brazil 2 Universidade Federal
da Paraiba - UFPB, Brazil § Corresponding author * These authors contributed equally.

Summary

Object-oriented languages brought important concepts and concerns to the software industry,
such as inheritance, polymorphism, and coupling. Since the 1970s, these concepts have been
studied, and in particular, coupling has emerged as an important mechanism that allows
components to keep the details of their construction restricted (Parnas, 1972). In this sense,
when an object’s encapsulation is compromised, its implementation becomes exposed, and
other parts of the code can directly alter its behavior, reducing the cohesion of the software.
This coupling between components can cause critical problems in the development cycle,
increasing the costs of its evolution and maintenance. This paper presents DemeterWatch, a
tool to identify a specific case of coupling violations inside Java projects source code.

Statement of need

One of the pillars of software engineering is the pursuit of continuous improvement of processes
and practices, incorporating feedback and lessons throughout the software lifecycle. Proper
documentation, efficient team collaboration, and ensuring quality are fundamental elements
for success in this type of project. Additionally, the rapid evolution of technology requires
software engineering professionals to stay up-to-date and ready to adapt to new trends and
challenges in the industry, with software quality assurance being one of the key practices in
the field (Pressman & Maxim, 2014).

During the process of software development, a recurring issue is the coupling created between
classes, often due to inefficient modeling, resulting in code with classes and methods that
are not very reusable and difficult to maintain during the other stages. A principle aimed at
minimizing the problems mentioned above is the Law of Demeter (LoD) or the principle of
the least knowledge (Lieberherr et al., 1988). When a class does not comply with the LoD,
other problems may arise. One such issue is the confinement break, which occurs when an
object can change the state of another object without its knowledge, by calling methods that
improperly expose their properties.

Identifying principle violations in Java source code is challenging. Static analysis (Bardas
& others, 2010), the method employed in this work, cannot pinpoint which methods alter
an object's state. Consequently, the analysis is focused on data structures within the Java
Collections Framework (JCF)(Collections Framework Overview — Docs.oracle.com). The
JCF is well-documented, and its documentation specifies which methods modify the state of
collection objects.

This approach is crucial as it highlights issues that are not readily apparent, including subtle
and difficult-to-detect forms (Bock, 2018). It also provides a means to visualize detected

de Aquino et al. (2025). DemeterWatch: A Java tool to detect Law of Demeter violations in Java collections. Journal of Open Source Software, 1
10(107), 7308. https://doi.org/10.21105/joss.07308.


https://orcid.org/0009-0004-9334-5936
https://orcid.org/0000-0001-9054-8659
https://doi.org/10.21105/joss.07308
https://github.com/openjournals/joss-reviews/issues/7308
https://github.com/youngkaneda/DemeterWatch
https://doi.org/10.5281/zenodo.15012171
https://vissarion.github.io
https://orcid.org/0000-0002-0780-666X
https://github.com/saaikrishnan
https://github.com/louiseadennis
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07308

The Journal of Open Source Software

breaches, facilitating corrections in the source code.

State of field

Some works have already attempted to identify such violations in other software contexts and
scopes. One example is Hou et al. (2004), which presented a specification language for use by
framework users, enabling them to mechanically check code compliance. This allows framework
developers to create constraints on what others must avoid when coding with that framework
in a C++ environment. It also demonstrates the creation of a Law of Demeter specification
outlining which couplings are acceptable and which should be avoided. Unfortunately, it did
not show any ways to detect when an object’s state is being changed, which is the focus of
this project.

In a second work, Chiba et al. (2010) aimed to detect Law of Demeter (LoD) violations
within Java as an Eclipse plugin, but it primarily focused on checking for dependencies between
packages.

Unlike the tools cited above, this work contributes to the state of the field by delving into
the detection of not only pure LoD violations but also whether these violations change the
object’s state without its consent, because this leads to a more unpredictable context and a
more difficult software to maintain.

Example use case

The complete dataset of experiments is available in the repository to further visualization
containing forty randomly selected projects outputs, those projects are present at Qualitas.class
corpus (Terra et al., 2013). Table 1 shows how many LoD violations were found in open source
projects, some of them well-known projects used by Java developers:

Name Violations found
Apache Collections 6
Apache Tomcat 20
Quartz 1
JGrapht 6
JMeter 6

Table 1. Example of violations found in real open source projects analyzed by the tool.

In addition to textual output, the tool generates an HTML page with a graphical representation
of method call chains in the source code. Nodes that violated LoD principle are highlighted
in a distinct color. Each vertex's weight indicates the frequency of method calls. Figure 1
contains an illustrated example of a detected violation.

de Aquino et al. (2025). DemeterWatch: A Java tool to detect Law of Demeter violations in Java collections. Journal of Open Source Software, 2
10(107), 7308. https://doi.org/10.21105/joss.07308.


https://doi.org/10.21105/joss.07308

The Journal of Open Source Software

& L @ Selected node info:

ae) ' | . (click in any node on the graph)

@\ 1/ @&

™ » A 7 & 1d: 695
B 14

” Method Name: removeljava.lang.Object]
S
,‘ , Invoked By: System.getProperties()

Class Name: java util Properties

o = ) : Search node by method name:

.« - (you can dlick in the resulting nodes and it will zoom it on the
(s034) P 1 graph)

- 2 [removel

-
(1o €3 removeljava.lang.Object]

O\ 5 s &I removelint, int]
- (495

' © N\ (o 23 removeljava.awt.Component]
4 ~—s Ve -~ Z
14) Pe o N~ @5 3 removeljavax swing KeyStroke]

P ¢ &< @
11111 @ &)
=
(2a03)

; o)
‘‘‘‘‘

Figure 1. DemeterWatch HTML output page.

Acknowledgements

The main author, Juan Pablo P. de Aquino, would like to express gratitude to the IFPB
Institute which made this research project possible to be developed and offered the support
needed.

References

Bardas, A. G., & others. (2010). Static code analysis. Journal of Information Systems &
Operations Management, 4(2), 99-107.

Bock, D. (2018). The paperboy, the wallet, and the Law of Demeter. https://www2.ccs.neu.
edu/research /demeter/demeter-method /LawOfDemeter/paper-boy/demeter.pdf

Chiba, R., Hashiura, H., & Komiya, S. (2010). A tool for detecting detects on class imple-
mentation in object oriented program on the basis of the Law of Demeter: Focusing on
dependency between packages. Proceedings of the 10th WSEAS International Conference
on Applied Computer Science, 315-320. ISBN: 9789604742318

Collections Framework Overview — docs.oracle.com. https://docs.oracle.com/javase/8/docs/
technotes/guides/collections/overview.html.

Hou, D., Hoover, H. J., & Rudnicki, P. (2004). Specifying the Law of Demeter and C++
programming guidelines with FCL. Source Code Analysis and Manipulation, Fourth IEEE
International Workshop on, 119-127. https://doi.org/10.1109/scam.2004.22

Lieberherr, K., Holland, I., & Riel, A. (1988). Object-oriented programming: An objective
sense of style. SIGPLAN Not., 23(11), 323-334. https://doi.org/10.1145/62084.62113

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12), 1053-1058. https://doi.org/10.1145/361598.361623

Pressman, R. S., & Maxim, B. R. (2014). Software engineering: A practitioner’s approach
(8th ed.). McGraw-Hill Professional. ISBN: 9780078022128

Terra, R., Miranda, L. F., Valente, M. T., & Bigonha, R. S. (2013). Qualitas.class corpus:
A compiled version of the qualitas corpus. SIGSOFT Softw. Eng. Notes, 38(5), 1-4.

de Aquino et al. (2025). DemeterWatch: A Java tool to detect Law of Demeter violations in Java collections. Journal of Open Source Software, 3
10(107), 7308. https://doi.org/10.21105/joss.07308.


https://www2.ccs.neu.edu/research/demeter/demeter-method/LawOfDemeter/paper-boy/demeter.pdf
https://www2.ccs.neu.edu/research/demeter/demeter-method/LawOfDemeter/paper-boy/demeter.pdf
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://doi.org/10.1109/scam.2004.22
https://doi.org/10.1145/62084.62113
https://doi.org/10.1145/361598.361623
https://doi.org/10.21105/joss.07308

The Journal of Open Source Software

https://doi.org/10.1145/2507288.2507314

de Aquino et al. (2025). DemeterWatch: A Java tool to detect Law of Demeter violations in Java collections. Journal of Open Source Software, 4
10(107), 7308. https://doi.org/10.21105/joss.07308.


https://doi.org/10.1145/2507288.2507314
https://doi.org/10.21105/joss.07308

	Summary
	Statement of need
	State of field
	Example use case
	Acknowledgements
	References

