
flory: A Python package for finding coexisting phases
in multicomponent mixtures
Yicheng Qiang 1 and David Zwicker 1

1 Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
DOI: 10.21105/joss.07388

Software
• Review
• Repository
• Archive

Editor: Sarath Menon
Reviewers:

• @SunyongKwon
• @mastricker

Submitted: 19 September 2024
Published: 11 March 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Phase separation is an intrinsic property of mixtures that is widely observed in many scenarios,
ranging from the simple demixing of oil and water to the condensation of biomolecules in
cells (Hyman et al., 2014). In multicomponent mixtures, phase separation can lead to many
coexisting phases, which is crucial in many fields. One key step to understand phase separation
is to measure or predict the composition of the coexisting phases. To support such research,
the flory package provides an easily accessible, performant, and extensible code that finds
coexisting phases in multicomponent mixtures. The package expresses the free energy of the
mixtures by several orthogonal aspects to cover a broad range of physical situations. In contrast
to existing methods, the flory package implements a state-of-art method that is optimized
for mixtures of many components. The package mainly focus on the mixtures with uniform
and relatively simple free energies such as Flory-Huggins free energy and its generalizations,
while more complicated ones can also be supported through extensions.

Statement of need
Finding coexisting phases is a common task in many fields, such as chemical engineering
(Lukas et al., 2007) and soft matter physics (Jacobs, 2023). The coexisting phases can be
theoretically predicted by solving the balance equations between phases (Zwicker & Laan,
2022), or equivalently minimizing the total free energy of the whole mixture (Lukas et al., 2007).
Other strategies include direct spatially-resolved simulations (Shrinivas & Brenner, 2021) and
the construction of the convex hull of the free energy landscape (Mao et al., 2019). There are
a few open-source packages that implement these strategies. Most notably, Calphad packages,
including Equilipy (Kwon et al., 2024), pycalphad (Otis & Liu, 2017) and OpenCalphad

(Sundman et al., 2015), combine a database of candidate phases and the strategies above to
compute phase diagrams of mixtures with few components. In addition, SurfinPy (Tse et al.,
2022) applies the free energy minimization strategy to surface phases.

In general, finding coexisting phases is challenging for mixtures with a large number of the
components, 𝑁C. This is because the number of degrees of freedom (e.g., to describe the
composition of the phases) increases with larger 𝑁C. Moreover, the possible number of
coexisting phases also increases with 𝑁C according to Gibbs phase rule, implying that the free
energy of the entire system comprises roughly 𝑁2

C free variables. This high-dimensional space
needs to be sampled to find the global minimum with multiple coexisting phases, which is
infeasible for some of the strategies mentioned above since they become prohibitively expensive.
For example, the cost of the convex hull strategy increases exponentially with 𝑁C since it
requires sampling the entire free energy landscape. The existing Calphad packages address this
challenge by taking the advantage of several strategies (Lukas et al., 2007). For example, the
free energy minimization strategy can refine the results obtained from the convex hull strategy.
Besides, Calphad packages usually provide high flexibility on candidate phases, allowing each

Qiang, & Zwicker. (2025). flory: A Python package for finding coexisting phases in multicomponent mixtures. Journal of Open Source Software,
10(107), 7388. https://doi.org/10.21105/joss.07388.

1

https://orcid.org/0000-0003-2053-079X
https://orcid.org/0000-0002-3909-3334
https://doi.org/10.21105/joss.07388
https://github.com/openjournals/joss-reviews/issues/7388
https://github.com/qiangyicheng/flory
https://doi.org/10.5281/zenodo.14851873
http://sarathmenon.me/
https://orcid.org/0000-0002-6776-1213
https://github.com/SunyongKwon
https://github.com/mastricker
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07388

phase to have different free energies to model realistic systems (Sundman et al., 2015). In
contrast, flory focuses on the general physics of multicomponent phase separation, and
thus assumes that all candidate phases share the same free energy function, e.g., the simple
Flory-Huggins free energy, similar to a recent submodule of the OpenCalphad package (Li et al.,
2020). These simple models are more common in liquid systems such as polymer mixtures, and
have recently been considered relevant to phase separation in biological cells. The restrictions of
the physical model simplifies the user interface and allow for an efficient optimization algorithm.
For example, flory implements an algorithm that automatically satisfies the constraints of
ensembles, thus reducing the Lagrange multipliers required (White et al., 1958). To obtain the
coexisting phases in equilibrium without the prior knowledge of the compositions of the phases,
flory starts from many phases initially and then clusters the equivalent phases afterwards.
As the result, the flory package can efficiently determine the multiple coexisting phases in
equilibrium in a range of multicomponent mixtures with large number of the components 𝑁C.

Methods
The flory package is based on the free energy minimization strategy. To reduce computation
cost, the package focuses on coexisting phases in thermodynamically large systems, where
the interfaces between phases become negligible. Coexisting phases can thus be found by
minimizing the average free energy density ̄𝑓 of the entire system, which is given by

̄𝑓(𝑁P, {𝐽𝑝}, {𝜙𝑝,𝑖}) =
𝑁P

∑
𝑝=1

𝐽𝑝𝑓({𝜙𝑝,𝑖}) ,

where 𝑁C is the number of components, 𝑁P is the number of phases, 𝐽𝑝 denotes the fraction
of volume that phase 𝑝 = 1,… ,𝑁P occupies in the entire system, and 𝜙𝑝,𝑖 is the volume
fraction of component 𝑖 = 1,… ,𝑁C in phase 𝑝. The physical behavior of the mixture is
encoded in the free energy density 𝑓, which flory expresses using four orthogonal aspects:
interaction, entropy, ensemble, and constraints. The package only imposes limits on the entropy
part, which is crucial for the core algorithm, while the other three aspects are rather flexible.
For instance, the interactions can be described by quadratic terms, like in the Flory-Huggins
model, and the parameters can be obtained from database such as 3PDB (Polymer Property
Predictor and Database, 2019) for realistic polymer mixtures, or freely chosen for theoretical
investigations. By combining these four aspects, flory supports a broad range of free energy
densities 𝑓 with different ensembles and constraints. A few widely-used specializations are
provided for all four aspects, while customized ones can be added easily.

The flory package is designed to deliver high performance. The core part of the flory

package is the finder for coexisting phases, which can be reused when the number 𝑁C of
components is kept fixed. This design moves a significant overhead to the creation of the
solver, which can be amortized in many tasks, e.g., when a phase diagram is sampled. The
core methods in the finder are just-in-time (JIT) compiled using numba (Lam et al., 2015) to
achieve high performance. To support different forms of the free energy 𝑓, the core method is
also designed to be general. The finder fetches compiled instances of the interaction, entropy,
ensemble, and constraints, where case-specific codes are inserted as methods. These methods
are also compiled for performance, using the experimental jitclass feature from numba (Lam
et al., 2015).

The flory package adopts state-of-the-art numerical methods to determine coexisting phases.
The main idea is to represent the system by many independent compartments, which can
exchange particles and volumes, obeying total constraints (Zwicker & Laan, 2022). The flory

package then minimizes the full free energy ̄𝑓 instead of directly solving the corresponding
coexistence conditions. At the free energy minimum, compartments may share similar composi-
tions, which the package then cluster to obtain unique phases using the scipy cluster methods

Qiang, & Zwicker. (2025). flory: A Python package for finding coexisting phases in multicomponent mixtures. Journal of Open Source Software,
10(107), 7388. https://doi.org/10.21105/joss.07388.

2

https://doi.org/10.21105/joss.07388

(Virtanen et al., 2020). This strategy circumvents the typical challenge of multiple local minima
and it avoids iterating over all possible phase counts 𝑁P. To improve performance, the flory

package implements the improved Gibbs ensemble method we developed recently (Qiang et
al., 2024). This method redistributes components across all compartments simultaneously,
guided by a set of conjugate variables, such that the total computation cost per step only
scales linearly with the number of compartments. Beside the core function of finding coexisting
phases, flory also includes convenience tools, e.g., to analyze thermodynamic properties such
as chemical potentials and osmotic pressures. In summary, the flory package can typically
obtain the equilibrium coexisting states even in systems with many interacting components.

Examples
The following code illustrates the main functionality of the package by finding the two coexisting
phases of a symmetric Flory-Huggins binary mixture with 𝜒 = 4:

fh = flory.FloryHuggins(2, chis=[[0, 4.0], [4.0, 0]])

ensemble = flory.CanonicalEnsemble(2, phi_means=[0.5, 0.5])

finder = flory.CoexistingPhasesFinder(fh.interaction, fh.entropy, ensemble)

phases = finder.run().get_clusters()

Here, FloryHuggins represents the seminal Flory-Huggins free energy that creates the in-
teraction FloryHugginsInteraction and the entropy IdealGasEntropy simultaneously, and
provides tools for analyzing coexisting phases. By updating the interaction, we can then obtain
the coexisting phases of another symmetric binary mixture with 𝜒 = 3.5:

fh.chis = [[0, 3.5], [3.5, 0]]

finder.set_interaction(fh.interaction)

phases = finder.run().get_clusters()

This procedure can be repeated to sample an entire phase diagrams. For example, the following
code will generate the phase diagram of a mixture of two components with identical molecular
sizes,

import matplotlib.pyplot as plt

import numpy as np

import flory

fh = flory.FloryHuggins(2, chis=[[0, 5.0], [5.0, 0]])

ensemble = flory.CanonicalEnsemble(2, phi_means=[0.5, 0.5])

finder = flory.CoexistingPhasesFinder(fh.interaction, fh.entropy, ensemble)

line_chi = []

line_l = []

line_h = []

for chi in np.arange(5.0, 1.0, -0.1): # scan chi from high value to low value

fh.interaction.chis = [[0, chi], [chi, 0]] # set chi matrix of the finder

finder.set_interaction(fh.interaction)

phases = finder.run().get_clusters() # get coexisting phases

if phases.fractions.shape[0] == 1: # stop scanning if no phase separation

break

line_chi.append(chi)

line_l.append(phases.fractions[1, 0])

line_h.append(phases.fractions[0, 0])

plt.plot(line_l, line_chi, c="black")

plt.plot(line_h, line_chi, c="black")

plt.xlabel("$\\phi$")

Qiang, & Zwicker. (2025). flory: A Python package for finding coexisting phases in multicomponent mixtures. Journal of Open Source Software,
10(107), 7388. https://doi.org/10.21105/joss.07388.

3

https://doi.org/10.21105/joss.07388

plt.ylabel("$\\chi$")

plt.show()

Figure 1: Phase diagram of binary mixture. The lines show the coexisting composition 𝜙 at a given
interaction strength 𝜒, together known as a the binodal line.

Moreover, one can vary the type of interaction by initializing a different class or by modifying
the existing one, and one could similarly change the entropy, ensemble, and constraints.
Customized specialization of all four aspects can be easily implemented by deriving from the
provided base classes (“Flory” Python Package — Flory Documentation, 2025).

Acknowledgements
We thank Chengjie Luo for stimulating discussions. We gratefully acknowledge funding from
the Max Planck Society and the European Union (ERC, EmulSim, 101044662).

References
“Flory” Python package — flory documentation. (2025). https://flory.readthedocs.io

Hyman, A. A., Weber, C. A., & Jülicher, F. (2014). Liquid-Liquid Phase Separation in Biology.
Annual Review of Cell and Developmental Biology, 30(1), 39–58. https://doi.org/10.1146/
annurev-cellbio-100913-013325

Jacobs, W. M. (2023). Theory and Simulation of Multiphase Coexistence in Biomolecular
Mixtures. Journal of Chemical Theory and Computation, 19(12), 3429–3445. https:
//doi.org/10.1021/acs.jctc.3c00198

Kwon, S. Y., Thibodeau, E., Plotkowski, A., & Yang, Y. (2024). Equilipy: A python

Qiang, & Zwicker. (2025). flory: A Python package for finding coexisting phases in multicomponent mixtures. Journal of Open Source Software,
10(107), 7388. https://doi.org/10.21105/joss.07388.

4

https://flory.readthedocs.io
https://doi.org/10.1146/annurev-cellbio-100913-013325
https://doi.org/10.1146/annurev-cellbio-100913-013325
https://doi.org/10.1021/acs.jctc.3c00198
https://doi.org/10.1021/acs.jctc.3c00198
https://doi.org/10.21105/joss.07388

package for calculating phase equilibria. Journal of Open Source Software, 9(100), 6875.
https://doi.org/10.21105/joss.06875

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based Python JIT compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 1–6.
https://doi.org/10.1145/2833157.2833162

Li, J., Sundman, B., Winkelman, J. G. M., Vakis, A. I., & Picchioni, F. (2020). Implementation
of the UNIQUAC model in the OpenCalphad software. Fluid Phase Equilibria, 507, 112398.
https://doi.org/10.1016/j.fluid.2019.112398

Lukas, H. L., Fries, S. G., & Sundman, B. (2007). Computational thermodynamics: The
Calphad method. Cambridge University Press. ISBN: 978-0-521-86811-2

Mao, S., Kuldinow, D., Haataja, M. P., & Košmrlj, A. (2019). Phase behavior and morphology
of multicomponent liquid mixtures. Soft Matter, 15(6), 1297–1311. https://doi.org/10.
1039/C8SM02045K

Otis, R., & Liu, Z.-K. (2017). Pycalphad: CALPHAD-based Computational Thermodynamics
in Python. Journal of Open Research Software, 5(1). https://doi.org/10.5334/jors.140

Polymer Property Predictor and Database. (2019). https://pppdb.uchicago.edu

Qiang, Y., Luo, C., & Zwicker, D. (2024). Scaling of phase count in multicomponent liquids
(No. arXiv:2405.01138). arXiv. https://arxiv.org/abs/2405.01138

Shrinivas, K., & Brenner, M. P. (2021). Phase separation in fluids with many interacting
components. Proceedings of the National Academy of Sciences, 118(45), e2108551118.
https://doi.org/10.1073/pnas.2108551118

Sundman, B., Kattner, U. R., Palumbo, M., & Fries, S. G. (2015). OpenCalphad - a free
thermodynamic software. Integrating Materials and Manufacturing Innovation, 4(1), 1–15.
https://doi.org/10.1186/s40192-014-0029-1

Tse, J. S., Molinari, M., Parker, S. C., & Symington, A. R. (2022). SurfinPy 2.0: A Phase
Diagram Generator for Surfaces and Bulk Phases. Journal of Open Source Software, 7 (71),
4014. https://doi.org/10.21105/joss.04014

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
… van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in
Python. Nature Methods, 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

White, W. B., Johnson, S. M., & Dantzig, G. B. (1958). Chemical Equilibrium in Complex
Mixtures. The Journal of Chemical Physics, 28(5), 751–755. https://doi.org/10.1063/1.
1744264

Zwicker, D., & Laan, L. (2022). Evolved interactions stabilize many coexisting phases in
multicomponent liquids. Proceedings of the National Academy of Sciences, 119(28),
e2201250119. https://doi.org/10.1073/pnas.2201250119

Qiang, & Zwicker. (2025). flory: A Python package for finding coexisting phases in multicomponent mixtures. Journal of Open Source Software,
10(107), 7388. https://doi.org/10.21105/joss.07388.

5

https://doi.org/10.21105/joss.06875
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1016/j.fluid.2019.112398
https://doi.org/10.1039/C8SM02045K
https://doi.org/10.1039/C8SM02045K
https://doi.org/10.5334/jors.140
https://pppdb.uchicago.edu
https://arxiv.org/abs/2405.01138
https://doi.org/10.1073/pnas.2108551118
https://doi.org/10.1186/s40192-014-0029-1
https://doi.org/10.21105/joss.04014
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1063/1.1744264
https://doi.org/10.1063/1.1744264
https://doi.org/10.1073/pnas.2201250119
https://doi.org/10.21105/joss.07388

	Summary
	Statement of need
	Methods
	Examples
	Acknowledgements
	References

