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Summary

Understanding the behaviour of fluid flow, such as air over a wing, oil lubrication in gas turbines,
or cooling air flow in a combustor or turbine is crucial in many engineering applications, from
designing aircraft and automotive components to optimising energy systems. Computational
Fluid Dynamics (CFD) enables engineers to model real-world processes, optimise designs,
and predict performance for a wide range of scenarios, and it has become a vital part of the
modern engineering design process for creating efficient, safe, and sustainable designs. As
engineers seek to develop and optimise new designs, particularly in fields where there is a
drive to push the current state-of-the-art or physical limits of existing design solutions, often,
new CFD methodologies or physical models are required. Therefore, extendable and flexible
CFD frameworks are needed, for example, to allow seamless integration with machine learning
models. In this paper, the features of the first release of the Julia package XCALibre.jl are
presented. Designed with extensibility in mind, XCALibre. jl is aiming to facilitate the rapid
prototyping of new fluid models and to easily integrate with Julia's powerful ecosystem, enabling
access to optimisation libraries and machine learning frameworks to enhance its functionality
and expand its application potential, whilst offering multi-threaded performance on CPUs and
GPU acceleration.

Statement of need

Given the importance of fluid flow simulation in engineering applications, it is not surprising
that there is a wealth of CFD solvers available, both open-source and commercially available.
Well established open-source codes include: OpenFOAM (Greenshields, 2024), SU2 (Economon
et al., 2016), CODE_SATURN (Archambeau et al., 2004), Basilisk (Hooft & others, 2016),
etc. It is a testament to the open-source philosophy, and their developers, that some of these
codes offer almost feature parity with commercial codes. However, established open-source and
commercial codes have large codebases and, for performance reasons, have been implemented
in statically compiled languages which makes it difficult to adapt and incorporate recent trends
in scientific computing, for example, GPU computing and interfacing with machine learning
frameworks to support the development of new models (Ellis & Xia, 2023, 2024). As a result,
the research community has been actively developing new CFD codes, which is evident within
the Julia ecosystem.

The Julia programming language offers a fresh approach to scientific computing, with the
benefits of dynamism whilst retaining the performance of statically typed languages thanks
to its just-in-time compilation approach (using LLVM compiler technology). Thus, Julia
makes it easy to prototype and test new ideas whilst producing performant machine code.
This simplicity-performance dualism has resulted in a remarkable growth in its ecosystem
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offering for scientific computing, which includes state-of-the-art packages for solving differential
equations e.g. DifferentialEquations.jl (Rackauckas & Nie, 2017) , building machine
learning models such as Flux.jl (Innes, 2018), Knet.jl (Yuret, 2016) and Lux.jl (Pal,
2023), optimisation frameworks e.g. JUMP. j1 (Lubin et al., 2023) , automatic differentiation,
such as Enzyme.jl (Moses & Churavy, 2020) , etc. Likewise, excellent CFD packages have
also been developed, e.g. Oceananigans.jl (Ramadhan et al., 2020), which provides tools
for ocean modelling, Trixi.jl (Schlottke-Lakemper et al., 2021) which provides high-order
solvers using the Discontinuous Garlekin method, and Waterlilly.jl (Weymouth & Font,
2024), which implements the immersed boundary method on structured grids using a staggered
finite volume method. To complement and extend the CFD offering of the Julia ecosystem,
XCAL1ibre.jl provides a composable framework which enables the aforementioned strengths of
the Julia programming language to be realised in an unstructured finite volume solver with
XPU capabilities. The package is intended primarily for researchers and students, as well
as engineers, who are interested in CFD applications using the built-in solvers. Additionally,
XCAL1ibre.jl offers developers a user-friendly and computationally efficient framework for
prototyping cutting-edge CFD solvers or methodologies, which can be tested in complex
geometries relevant to a wide range of engineering applications.

Key features

The main features available in the latest release (version 0.4) are highlighted here. Users
are also encouraged to explore the latest version of the user guide where the public APl and
current features are documented.

= XPU computation XCALibre.jl is implemented using KernelAbstractions.jl which
allows it to support both multi-threaded CPU and GPU calculations.

= Unstructured grids and formats XCALibre.jl is implemented to support unstructured
meshes using the Finite Volume method for equation discretisation. Thus, arbitrary
polyhedral cells are supported, enabling the representation and simulation of complex
geometries. XCALibre.jl provides mesh conversion functions to import externally
generated grids. Currently, the Ideas (unv) and OpenFOAM mesh formats can be used.
The .unv mesh format supports both 2D and 3D grids (note that the .unv format only
supports prisms, tetrahedral, and hexahedral cells). The OpenFOAM mesh format can
be used for 3D simulations (this format has no cell restrictions and supports arbitrary
polyhedral cells).

= Flow solvers Steady and transient solvers are available, which use the SIMPLE and
PISO algorithms for steady and transient simulations, respectively. These solvers support
simulation of both incompressible and weakly compressible fluids (using a sensible energy
model).

= Turbulence models RANS and LES turbulence models are supported. RANS models
available in the current release include: the standard Wilcox k — w model (Wilcox, 1988)
and the transitional £ — w LKE model (Medina et al., 2018). For LES simulations the
classic Smagorinsky model (Smagorinsky, 1963) is available.

= VTK simulation output Simulation results are written to vtk files for 2D cases and
vtu for 3D simulations. This allows to perform simulation post-processing in ParaView,
which is the leading open-source project for scientific visualisation.

= Linear solvers and discretisation schemes Users are able to select from a growing range
of pre-defined discretisation schemes, e.g. Upwind, Linear and LUST for discretising
divergence terms. By design, the choice of discretisation strategy is made on a term-
by-term basis, offering great flexibility. Users must also select and configure the linear
solvers used to solve the discretised equations. Linear solvers are provided by Krylov.jl
(Montoison & Orban, 2023) and reexported in XCALibre.jl for convenience (please
refer to the user guide for details on exported solvers).
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Examples

Users are referred to the documentation where examples for using XCALibre.jl are provided,
including advanced examples showing how it is possible to integrate the Julia ecosystem to
extend the functionality in XCALibre.jl, with examples that include flow optimisation, and
integration with the Flux.jl1 machine learning framework.

Verification: laminar flow over a backward facing step

The use of XCALibre.jl is now illustrated using simple backward-facing step configuration
with 4 boundaries as depicted in figure 1. The flow will be considered as incompressible and
laminar. The :wall and :top boundaries will be considered as solid wall boundaries. The
inflow velocity is 1.5 m/s, and the outlet boundary is set up as a pressure outlet (i.e. a
Dirichlet condition with a reference value of 0 Pa). Notice that this case uses a structured
grid for simplicity, however, in XCALibre. j1 the grid connectivity information is unstructured
and complex geometries can be used. Here the simulation is set up to run on the CPU.
The number of CPU threads to be used can be specified when launching the Julia process,
e.g. julia --threads 4. The steps needed to carry out the simulation on GPUs can be found
in the documentation.

top
X Axis

Figure 1: Computational domain

The corresponding simulation setup is shown below:

using XCALibre

# Get path to mesh file

grids_dir = pkgdir(XCALibre, "examples/0_GRIDS")
grid = "backwardFacingStep_10mm.unv"

mesh_file = joinpath(grids_dir, grid)

# Convert and load mesh
mesh = UNV2D_mesh(mesh_file, scale=0.001)

# Define flow variables & do checks
velocity = [1.5, 0.0, 0.0]; nu = 1e-3; H= 0.1
Re = velocity[1]1*H/nu # check Reynolds number

# Define models
model = Physics(
time = Steady(),
fluid = Fluid{Incompressible}(nu = nu),
turbulence = RANS{Laminar}(),
energy = Energy{Isothermal}(),
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domain = mesh

)

# Assign boundary conditions

@assign! model momentum U (
Dirichlet(:inlet, velocity),
Neumann( :outlet, 0.0),
Wall(:wall, [0.0, 0.0, 0.0]),
Wall(:top, [0.0, 0.0, 0.0]),

@assign! model momentum p (
Neumann( :inlet, 0.0),
Dirichlet(:outlet, 0.0),
Neumann( :wall, 0.0),
Neumann( :top, 0.0)

# Specify discretisation schemes
schemes = (
U = set_schemes(divergence = Linear),
p = set_schemes() # no input provided (will use defaults)

# Configuration: linear solvers
solvers = (
U = set_solver(
model.momentum.U;
solver = BicgstabSolver,
preconditioner = Jacobi(),
convergence = le-7,

relax =0.7,
rtol = le-4,
atol = le-10

)’

p = set_solver(
model.momentum.p;
solver = CgSolver,
preconditioner = Jacobi(),
convergence = le-7,
relax =0.7,
rtol le-4,
atol = le-10

# Configuration: runtime and hardware information
runtime = set_runtime(iterations=2000, time_step=1, write_interval=2000)
hardware = set_hardware(backend=CPU(), workgroup=1024)

# Configuration: build Configuration object
config = Configuration(

solvers=solvers, schemes=schemes, runtime=runtime, hardware=hardware)

# Initialise fields
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initialise!(model.momentum.U, velocity)
initialise!(model.momentum.p, 0.0)

# Run simulation
residuals = run!(model, config);

The velocity and pressure results are verified with those obtained using OpenFOAM (Green-
shields, 2024) and shown in figure 2, showing that they are in excellent agreement.
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Figure 2: Comparision with OpenFOAM
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