
XCALibre.jl: A Julia XPU unstructured finite volume
Computational Fluid Dynamics library
Humberto Medina 1¶, Christopher D. Ellis 1, Tom Mazin1, Oscar
Osborn1, Timothy Ward 1, Stephen Ambrose 1, Svetlana
Aleksandrova 2, Benjamin Rothwell 1, and Carol Eastwick 1

1 The University of Nottingham, UK 2 The University of Leicester, UK ¶ Corresponding author
DOI: 10.21105/joss.07441

Software
• Review
• Repository
• Archive

Editor: Anjali Sandip
Reviewers:

• @vlc1
• @simone-silvestri

Submitted: 14 October 2024
Published: 12 March 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Understanding the behaviour of fluid flow, such as air over a wing, oil lubrication in gas turbines,
or cooling air flow in a combustor or turbine is crucial in many engineering applications, from
designing aircraft and automotive components to optimising energy systems. Computational
Fluid Dynamics (CFD) enables engineers to model real-world processes, optimise designs,
and predict performance for a wide range of scenarios, and it has become a vital part of the
modern engineering design process for creating efficient, safe, and sustainable designs. As
engineers seek to develop and optimise new designs, particularly in fields where there is a
drive to push the current state-of-the-art or physical limits of existing design solutions, often,
new CFD methodologies or physical models are required. Therefore, extendable and flexible
CFD frameworks are needed, for example, to allow seamless integration with machine learning
models. In this paper, the features of the first release of the Julia package XCALibre.jl are
presented. Designed with extensibility in mind, XCALibre.jl is aiming to facilitate the rapid
prototyping of new fluid models and to easily integrate with Julia’s powerful ecosystem, enabling
access to optimisation libraries and machine learning frameworks to enhance its functionality
and expand its application potential, whilst offering multi-threaded performance on CPUs and
GPU acceleration.

Statement of need
Given the importance of fluid flow simulation in engineering applications, it is not surprising
that there is a wealth of CFD solvers available, both open-source and commercially available.
Well established open-source codes include: OpenFOAM (Greenshields, 2024), SU2 (Economon
et al., 2016), CODE_SATURN (Archambeau et al., 2004), Basilisk (Hooft & others, 2016),
etc. It is a testament to the open-source philosophy, and their developers, that some of these
codes offer almost feature parity with commercial codes. However, established open-source and
commercial codes have large codebases and, for performance reasons, have been implemented
in statically compiled languages which makes it difficult to adapt and incorporate recent trends
in scientific computing, for example, GPU computing and interfacing with machine learning
frameworks to support the development of new models (Ellis & Xia, 2023, 2024). As a result,
the research community has been actively developing new CFD codes, which is evident within
the Julia ecosystem.

The Julia programming language offers a fresh approach to scientific computing, with the
benefits of dynamism whilst retaining the performance of statically typed languages thanks
to its just-in-time compilation approach (using LLVM compiler technology). Thus, Julia
makes it easy to prototype and test new ideas whilst producing performant machine code.
This simplicity-performance dualism has resulted in a remarkable growth in its ecosystem

Medina et al. (2025). XCALibre.jl: A Julia XPU unstructured finite volume Computational Fluid Dynamics library. Journal of Open Source
Software, 10(107), 7441. https://doi.org/10.21105/joss.07441.

1

https://orcid.org/0000-0001-5691-9292
https://orcid.org/0000-0001-5237-6673
https://orcid.org/0009-0007-4346-1754
https://orcid.org/0000-0002-5833-4084
https://orcid.org/0000-0002-7398-6531
https://orcid.org/0000-0003-2503-7232
https://orcid.org/0000-0001-5773-6439
https://doi.org/10.21105/joss.07441
https://github.com/openjournals/joss-reviews/issues/7441
https://github.com/mberto79/XCALibre.jl
https://doi.org/10.5281/zenodo.14884519
https://campus.und.edu/directory/anjali.sandip
https://orcid.org/0000-0001-9221-1910
https://github.com/vlc1
https://github.com/simone-silvestri
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07441

offering for scientific computing, which includes state-of-the-art packages for solving differential
equations e.g. DifferentialEquations.jl (Rackauckas & Nie, 2017) , building machine
learning models such as Flux.jl (Innes, 2018), Knet.jl (Yuret, 2016) and Lux.jl (Pal,
2023), optimisation frameworks e.g. JUMP.jl (Lubin et al., 2023) , automatic differentiation,
such as Enzyme.jl (Moses & Churavy, 2020) , etc. Likewise, excellent CFD packages have
also been developed, e.g. Oceananigans.jl (Ramadhan et al., 2020), which provides tools
for ocean modelling, Trixi.jl (Schlottke-Lakemper et al., 2021) which provides high-order
solvers using the Discontinuous Garlekin method, and Waterlilly.jl (Weymouth & Font,
2024), which implements the immersed boundary method on structured grids using a staggered
finite volume method. To complement and extend the CFD offering of the Julia ecosystem,
XCALibre.jl provides a composable framework which enables the aforementioned strengths of
the Julia programming language to be realised in an unstructured finite volume solver with
XPU capabilities. The package is intended primarily for researchers and students, as well
as engineers, who are interested in CFD applications using the built-in solvers. Additionally,
XCALibre.jl offers developers a user-friendly and computationally efficient framework for
prototyping cutting-edge CFD solvers or methodologies, which can be tested in complex
geometries relevant to a wide range of engineering applications.

Key features
The main features available in the latest release (version 0.4) are highlighted here. Users
are also encouraged to explore the latest version of the user guide where the public API and
current features are documented.

• XPU computation XCALibre.jl is implemented using KernelAbstractions.jl which
allows it to support both multi-threaded CPU and GPU calculations.

• Unstructured grids and formats XCALibre.jl is implemented to support unstructured
meshes using the Finite Volume method for equation discretisation. Thus, arbitrary
polyhedral cells are supported, enabling the representation and simulation of complex
geometries. XCALibre.jl provides mesh conversion functions to import externally
generated grids. Currently, the Ideas (unv) and OpenFOAM mesh formats can be used.
The .unv mesh format supports both 2D and 3D grids (note that the .unv format only
supports prisms, tetrahedral, and hexahedral cells). The OpenFOAM mesh format can
be used for 3D simulations (this format has no cell restrictions and supports arbitrary
polyhedral cells).

• Flow solvers Steady and transient solvers are available, which use the SIMPLE and
PISO algorithms for steady and transient simulations, respectively. These solvers support
simulation of both incompressible and weakly compressible fluids (using a sensible energy
model).

• Turbulence models RANS and LES turbulence models are supported. RANS models
available in the current release include: the standard Wilcox 𝑘 −𝜔 model (Wilcox, 1988)
and the transitional 𝑘 − 𝜔 LKE model (Medina et al., 2018). For LES simulations the
classic Smagorinsky model (Smagorinsky, 1963) is available.

• VTK simulation output Simulation results are written to vtk files for 2D cases and
vtu for 3D simulations. This allows to perform simulation post-processing in ParaView,
which is the leading open-source project for scientific visualisation.

• Linear solvers and discretisation schemes Users are able to select from a growing range
of pre-defined discretisation schemes, e.g. Upwind, Linear and LUST for discretising
divergence terms. By design, the choice of discretisation strategy is made on a term-
by-term basis, offering great flexibility. Users must also select and configure the linear
solvers used to solve the discretised equations. Linear solvers are provided by Krylov.jl

(Montoison & Orban, 2023) and reexported in XCALibre.jl for convenience (please
refer to the user guide for details on exported solvers).

Medina et al. (2025). XCALibre.jl: A Julia XPU unstructured finite volume Computational Fluid Dynamics library. Journal of Open Source
Software, 10(107), 7441. https://doi.org/10.21105/joss.07441.

2

https://mberto79.github.io/XCALibre.jl/stable/
https://doi.org/10.21105/joss.07441

Examples
Users are referred to the documentation where examples for using XCALibre.jl are provided,
including advanced examples showing how it is possible to integrate the Julia ecosystem to
extend the functionality in XCALibre.jl, with examples that include flow optimisation, and
integration with the Flux.jl machine learning framework.

Verification: laminar flow over a backward facing step
The use of XCALibre.jl is now illustrated using simple backward-facing step configuration
with 4 boundaries as depicted in figure 1. The flow will be considered as incompressible and
laminar. The :wall and :top boundaries will be considered as solid wall boundaries. The
inflow velocity is 1.5 𝑚/𝑠, and the outlet boundary is set up as a pressure outlet (i.e. a
Dirichlet condition with a reference value of 0 𝑃𝑎). Notice that this case uses a structured
grid for simplicity, however, in XCALibre.jl the grid connectivity information is unstructured
and complex geometries can be used. Here the simulation is set up to run on the CPU.
The number of CPU threads to be used can be specified when launching the Julia process,
e.g. julia --threads 4. The steps needed to carry out the simulation on GPUs can be found
in the documentation.

Figure 1: Computational domain

The corresponding simulation setup is shown below:

using XCALibre

Get path to mesh file

grids_dir = pkgdir(XCALibre, "examples/0_GRIDS")

grid = "backwardFacingStep_10mm.unv"

mesh_file = joinpath(grids_dir, grid)

Convert and load mesh

mesh = UNV2D_mesh(mesh_file, scale=0.001)

Define flow variables & do checks

velocity = [1.5, 0.0, 0.0]; nu = 1e-3; H = 0.1

Re = velocity[1]*H/nu # check Reynolds number

Define models

model = Physics(

time = Steady(),

fluid = Fluid{Incompressible}(nu = nu),

turbulence = RANS{Laminar}(),

energy = Energy{Isothermal}(),

Medina et al. (2025). XCALibre.jl: A Julia XPU unstructured finite volume Computational Fluid Dynamics library. Journal of Open Source
Software, 10(107), 7441. https://doi.org/10.21105/joss.07441.

3

https://mberto79.github.io/XCALibre.jl/stable/
https://doi.org/10.21105/joss.07441

domain = mesh

)

Assign boundary conditions

@assign! model momentum U (

Dirichlet(:inlet, velocity),

Neumann(:outlet, 0.0),

Wall(:wall, [0.0, 0.0, 0.0]),

Wall(:top, [0.0, 0.0, 0.0]),

)

@assign! model momentum p (

Neumann(:inlet, 0.0),

Dirichlet(:outlet, 0.0),

Neumann(:wall, 0.0),

Neumann(:top, 0.0)

)

Specify discretisation schemes

schemes = (

U = set_schemes(divergence = Linear),

p = set_schemes() # no input provided (will use defaults)

)

Configuration: linear solvers

solvers = (

U = set_solver(

model.momentum.U;

solver = BicgstabSolver,

preconditioner = Jacobi(),

convergence = 1e-7,

relax = 0.7,

rtol = 1e-4,

atol = 1e-10

),

p = set_solver(

model.momentum.p;

solver = CgSolver,

preconditioner = Jacobi(),

convergence = 1e-7,

relax = 0.7,

rtol = 1e-4,

atol = 1e-10

)

)

Configuration: runtime and hardware information

runtime = set_runtime(iterations=2000, time_step=1, write_interval=2000)

hardware = set_hardware(backend=CPU(), workgroup=1024)

Configuration: build Configuration object

config = Configuration(

solvers=solvers, schemes=schemes, runtime=runtime, hardware=hardware)

Initialise fields

Medina et al. (2025). XCALibre.jl: A Julia XPU unstructured finite volume Computational Fluid Dynamics library. Journal of Open Source
Software, 10(107), 7441. https://doi.org/10.21105/joss.07441.

4

https://doi.org/10.21105/joss.07441

initialise!(model.momentum.U, velocity)

initialise!(model.momentum.p, 0.0)

Run simulation

residuals = run!(model, config);

The velocity and pressure results are verified with those obtained using OpenFOAM (Green-
shields, 2024) and shown in figure 2, showing that they are in excellent agreement.

Figure 2: Comparision with OpenFOAM

References
Archambeau, F., Méchitoua, N., & Sakiz, M. (2004). Code_Saturne: A finite volume code for

the computation of turbulent incompressible flows. International Journal on Finite Volumes,
1. https://hal.archives-ouvertes.fr/hal-01115371/document

Economon, T. D., Palacios, F., Copeland, S. R., Lukaczyk, T. W., & Alonso, J. J. (2016).
SU2: An open-source suite for multiphysics simulation and design. AIAA Journal, 54(3),
828–846. https://doi.org/10.2514/1.J053813

Ellis, C., & Xia, H. (2023). Data-driven turbulence anisotropy in film and effusion cooling
flows. Physics of Fluids, 35. https://doi.org/10.1063/5.0166685

Ellis, C., & Xia, H. (2024). LES informed data-driven models for RANS simulations of
single-hole cooling flows. International Journal of Heat and Mass Transfer, 235. https:
//doi.org/10.1016/j.ijheatmasstransfer.2024.126150

Greenshields, C. (2024). OpenFOAM v12 user guide. The OpenFOAM Foundation. https:
//doc.cfd.direct/openfoam/user-guide-v12

Hooft, A. van, & others. (2016). Basilisk. Zenodo. https://doi.org/10.5281/zenodo.1203631

Innes, M. (2018). Flux: Elegant machine learning with Julia. Journal of Open Source Software.
https://doi.org/10.21105/joss.00602

Lubin, M., Dowson, O., Dias Garcia, J., Huchette, J., Legat, B., & Vielma, J. P. (2023).
JuMP 1.0: Recent improvements to a modeling language for mathematical optimiza-
tion. Mathematical Programming Computation, 15, 581–589. https://doi.org/10.1007/
s12532-023-00239-3

Medina, H., Beechook, A., Fadhila, H., Aleksandrova, S., & Benjamin, S. (2018). A novel
laminar kinetic energy model for the prediction of pretransitional velocity fluctuations and

Medina et al. (2025). XCALibre.jl: A Julia XPU unstructured finite volume Computational Fluid Dynamics library. Journal of Open Source
Software, 10(107), 7441. https://doi.org/10.21105/joss.07441.

5

https://hal.archives-ouvertes.fr/hal-01115371/document
https://doi.org/10.2514/1.J053813
https://doi.org/10.1063/5.0166685
https://doi.org/10.1016/j.ijheatmasstransfer.2024.126150
https://doi.org/10.1016/j.ijheatmasstransfer.2024.126150
https://doc.cfd.direct/openfoam/user-guide-v12
https://doc.cfd.direct/openfoam/user-guide-v12
https://doi.org/10.5281/zenodo.1203631
https://doi.org/10.21105/joss.00602
https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.21105/joss.07441

boundary layer transition. International Journal of Heat and Fluid Flow, 69, 150–163.
https://doi.org/10.1016/j.ijheatfluidflow.2017.12.008

Montoison, A., & Orban, D. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods.
Journal of Open Source Software, 8(89), 5187. https://doi.org/10.21105/joss.05187

Moses, W., & Churavy, V. (2020). Instead of rewriting foreign code for machine learning,
automatically synthesize fast gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, & H. Lin (Eds.), Advances in neural information processing systems (Vol. 33, pp.
12472–12485). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/file/
9332c513ef44b682e9347822c2e457ac-Paper.pdf

Pal, A. (2023). Lux: Explicit parameterization of deep neural networks in Julia (Version v0.5.0).
Zenodo. https://doi.org/10.5281/zenodo.7808904

Rackauckas, C., & Nie, Q. (2017). DifferentialEquations.jl – a performant and feature-rich
ecosystem for solving differential equations in Julia. Journal of Open Research Software,
5(1), 15. https://doi.org/10.5334/jors.151

Ramadhan, A., Wagner, G. L., Hill, C., Campin, J.-M., Churavy, V., Besard, T., Souza,
A., Edelman, A., Ferrari, R., & Marshall, J. (2020). Oceananigans.jl: Fast and friendly
geophysical fluid dynamics on GPUs. Journal of Open Source Software, 5(53), 2018.
https://doi.org/10.21105/joss.02018

Schlottke-Lakemper, M., Winters, A. R., Ranocha, H., & Gassner, G. J. (2021). A purely
hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics. Journal of
Computational Physics, 442, 110467. https://doi.org/10.1016/j.jcp.2021.110467

Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The
basic experiment. Monthly Weather Review, 91(3), 99–164. https://doi.org/10.1175/
1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2

Weymouth, G. D., & Font, B. (2024). WaterLily.jl: A differentiable and backend-agnostic
Julia solver to simulate incompressible viscous flow and dynamic bodies. https://doi.org/
10.48550/arXiv.2407.16032

Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence
models. AIAA Journal, 26(11), 1299–1310. https://doi.org/10.2514/3.10041

Yuret, D. (2016). Knet: Beginning deep learning with 100 lines of Julia. NIPS 2016.
ISBN: 9781510838819

Medina et al. (2025). XCALibre.jl: A Julia XPU unstructured finite volume Computational Fluid Dynamics library. Journal of Open Source
Software, 10(107), 7441. https://doi.org/10.21105/joss.07441.

6

https://doi.org/10.1016/j.ijheatfluidflow.2017.12.008
https://doi.org/10.21105/joss.05187
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://doi.org/10.5281/zenodo.7808904
https://doi.org/10.5334/jors.151
https://doi.org/10.21105/joss.02018
https://doi.org/10.1016/j.jcp.2021.110467
https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2
https://doi.org/10.48550/arXiv.2407.16032
https://doi.org/10.48550/arXiv.2407.16032
https://doi.org/10.2514/3.10041
https://doi.org/10.21105/joss.07441

	Summary
	Statement of need
	Key features
	Examples
	Verification: laminar flow over a backward facing step

	References

