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Summary
Recent advancements in Generative AI (GenAI), particularly Large Language Models (LLMs),
have led to significant increases in computational power and energy demands. These models
are not only becoming larger and more complex but are also being widely deployed across
various platforms, reaching millions of users and developers. This widespread use has escalated
the overall energy consumption and environmental impact associated with these technologies.

To address these concerns, we introduce EcoLogits, an open-source Python package designed
to evaluate the environmental footprint of using GenAI models. EcoLogits estimates energy
consumption and multi-criteria environmental impacts of GenAI API requests using a bottom-
up Life Cycle Assessment methodology, considering both direct energy use and hardware
production impacts.

Statement of need
While the recent developments in GenAI offer tools of unprecedented quality, there is a general
trend of increased energy consumption associated with these technologies (Vries, 2023). It
is a well-known fact that training large neural networks yield non-negligible carbon emissions
(Lacoste et al., 2019; Patterson et al., 2021); Some industry actors communicate about the
emissions of training their own models, such as Meta that estimated carbon emissions of Llama
models (AI@Meta, 2024; Touvron, Lavril, et al., 2023; Touvron, Martin, et al., 2023).

The major difference in recent years is that GenAI models are not only large models but are
also widely used by millions of people through web application such as OpenAI’s ChatGPT
or via APIs. The literature agrees on the fact that the share of carbon emissions from the
serving of GenAI models (inference) is increasing (Desislavov et al., 2023; Patterson et al.,
2021), although these proportions vary among providers, with AWS reporting 80-90%, Google
60% and Meta 33% (Luccioni et al., 2024).

Moreover, while energy consumption is important, it alone is insufficient for a comprehensive
evaluation of the environmental impacts of training and inference. It is crucial to include
embodied impacts that come from hardware production. For LLMs such as BLOOM 176B,
accounting for the embodied impacts increased the total carbon emissions by 22% during the
training phase of the model (Luccioni et al., 2022). Environmental impacts evaluations of AI
models should be more transparent and follow Life Cycle Assessment (LCA) methodologies to
be complete (Ligozat et al., 2022).

In parallel to the large deployment of energy-consuming models in the industry, there is a
growing need for tools that automatically approximate their environmental impacts. While
tools like CodeCarbon or Zeus1 (Courty et al., 2024; You et al., 2023) can track energy

1See https://github.com/mlco2/codecarbon and https://github.com/ml-energy/zeus.
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consumption and carbon emissions for locally-deployed models, estimating impacts becomes
necessary when using external APIs from GenAI service providers. EcoLogits is the first Python
library to approximate the environmental impacts of GenAI models inference via Python client
calls. By adding EcoLogits.init() to their codebase, users can access an estimation of the
energy consumption and the environmental impacts of their requests.

Methodology
The Attributional Life Cycle Assessment (A-LCA) methodology defined by the ISO 14044
standard (Boustead, 1996; Hunt et al., 1996; Klöpffer, 1997) is used to properly estimate
potential environmental impacts of products, processes, projects, or services. In EcoLogits, we
apply this methodology to estimate the impacts of a request to a GenAI inference service. The
methodology encompasses multi-phase and multi-criteria environmental impacts.

In our approach we consider the usage phase accounting for the direct energy consumption
(Ilyas Moutawwakil, 2023a, 2023b) and the embodied phase accounting for the hardware
production, including raw material extraction, manufacturing, and transportation (Simon et
al., 2025). We do not include the end-of-life phase for lack of data and transparency on
e-waste collection and recycling (Bordage et al., 2021; Forti et al., 2020). EcoLogits reports
an estimation of the direct energy consumption in addition to other environmental impact
criteria such as Global Warming Potential (Stocker et al., 2013), Abiotic Depletion Potential
(Oers et al., 2020) and Primary Energy Consumption (Frischknecht et al., 2015). Assessing
multiple impact criteria helps prevent pollution shifting that can result from optimizing for a
single criterion.

To estimate the impacts of a GenAI service we use a bottom-up modeling approach, i.e. we
individually assess the environmental impacts of components that frame the service, and then
aggregate and allocate these impacts to a request. The scope of our methodology encompasses
cloud compute primitives and data center extra equipment such as cooling (see Figure 1). We
focus our study on high-performance GPU-accelerated cloud instances since they are commonly
used for GenAI inference tasks. We do not account for other impacts related to model training,
networking transfers, or end-user devices.

Figure 1: Scope and boundaries of our methodology focused on compute primitives

Discussions
Our approach for estimating the environmental impacts of GenAI inference aligns with industry
standards and focuses on real-world deployments. As the field is constantly evolving, we are
committed to refining our methodology to keep up with new model architectures, optimization
techniques, and hardware innovations. Our tool enables GenAI practitioners to evaluate and
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compare these models based on their environmental footprints. In the future, we plan to
expand our scope to include more stages of the model life cycle and new modalities.

One challenge we face is dealing with proprietary models from companies that do not share
details about their models and infrastructure. In these cases, we have to make educated
guesses, such as estimating the number of parameters in models and which hardware is being
used in production. We document these assumptions carefully and update them regularly as
new models are released.

We wish to highlight deeper concerns about the impact assessment of GenAI. Our approach,
while robust, does not capture the full range of environmental impacts associated with GenAI
technologies. To get a complete picture, indirect impacts and potential rebound effects must
also be considered. Pursuing “Green AI” means more than just making models smaller and
more efficient; it requires a holistic view of the environmental changes driven by this technology,
as well as its broader societal and service-level implications.
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