
robot_collision_checking: A Lightweight ROS 2
Interface to FCL (Flexible Collision Library)

Mark Zolotas 1*¶, Philip Long 2*, and Taskin Padir 1,3

1 Northeastern University, USA (at the time of this work) 2 Atlantic Technological University, Ireland 3
Amazon Robotics, USA ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.07473

Software
• Review
• Repository
• Archive

Editor: Chris Vernon
Reviewers:

• @Aravind-Sundararajan
• @cadojo

Submitted: 15 August 2024
Published: 27 January 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
This paper presents robot_collision_checking, a C++ library that provides a Robot Oper-
ating System (ROS) (Quigley et al., 2009) interface to the Flexible Collision Library (FCL)
(Pan et al., 2012) for typical robotics applications. FCL is an open-source C++ library that
provides efficient collision detection and distance computation for 3D environments. While
these capabilities are crucial in robotics to ensure safety and enable effective motion planning,
FCL is not readily available for many robot architectures built atop ROS. Given that the
robotics community widely relies on ROS as the standard for software development, it would
greatly benefit from a lightweight ROS interface to FCL. The robot_collision_checking

package fulfils this demand by exposing FCL functionality to ROS message types, thereby
allowing robotics researchers and practitioners that rely on ROS to easily access the collision
and distance checking features of FCL.

The robot_collision_checking package can calculate collisions and distances between a
variety of collision objects, including solid primitives (spheres, boxes, cylinders), planes, meshes,
voxel grids, and octrees (via the OctoMap library (Hornung et al., 2013)). Collision worlds
that contain multiple collision objects can also be created and maintained. This enables
collision and distance checking between single objects, as well as entire collision worlds. The
robot_collision_checking package includes an example node that demonstrates how to
create a collision world of ROS objects, use FCL functionality to perform collision-checking on
these objects, and visualize the world in RViz (Kam et al., 2015), e.g., for debugging purposes.

Additionally, we include ROS 1 and ROS 2 (Macenski et al., 2022) implementations of the
robot_collision_checking package. There are notable differences between these implemen-
tations due to the differences between ROS 1 and ROS 2, as well as how collision objects
are handled by the collision world class and utility functions of the core C++ library. As the
ROS 2 version is up-to-date, more well-documented, and continues to receive ongoing support,
we encourage users of robot_collision_checking to opt for this implementation. End-users
may also test the Docker image available to the code repository if they wish to explore this
package without installing ROS on their machine.

Statement of Need
Collision-checking is an increasingly important tool as robots are deployed into unstructured
and dynamic environments, while ROS 1 and ROS 2 provide the most popular means of
controlling robots for research applications. In the ROS ecosystem, one popular means of
enabling collision-checking is via MoveIt (Coleman et al., 2014), a path planning and trajectory
execution open-source software. The MoveIt collision-checking API can expose two different
collision checkers: bullet and FCL (Pan et al., 2012). However, to leverage this functionality

Zolotas et al. (2025). robot_collision_checking: A Lightweight ROS 2 Interface to FCL (Flexible Collision Library). Journal of Open Source
Software, 10(105), 7473. https://doi.org/10.21105/joss.07473.

1

https://orcid.org/0000-0002-7672-940X
https://orcid.org/0000-0002-0784-8720
https://orcid.org/0000-0001-5123-5801
https://doi.org/10.21105/joss.07473
https://github.com/openjournals/joss-reviews/issues/7473
https://github.com/philip-long/robot_collision_checking
https://doi.org/10.5281/zenodo.14736597
https://energyenvironment.pnnl.gov/staff/staff_info.asp?staff_num=1834
https://orcid.org/0000-0002-3406-6214
https://github.com/Aravind-Sundararajan
https://github.com/cadojo
https://creativecommons.org/licenses/by/4.0/
https://github.com/bulletphysics/bullet3
https://doi.org/10.21105/joss.07473


users have to install the entire MoveIt suite and either integrate their robot into MoveIt or
ensure that their platform is already available to the software suite. Moreover, while MoveIt
is an extremely sophisticated motion planning library, accessing lower-level functionality for
collision and distance checking requires in-depth knowledge of the library’s structure and
hierarchy. Pinocchio (Carpentier et al., 2021) is another powerful robot modeling software
that is also built upon FCL (a specific variant, known as Coal) but suffers from the same
overhead as MoveIt. The robot_collision_checking library aims to address the need for a
lightweight alternative by providing a simple and transparent ROS interface to the FCL library.
A comparison between robot_collision_checking, MoveIt, and Pinocchio is summarized in
Figure 1.

Figure 1: Table comparing robot_collision_checking, MoveIt, and Pinocchio.

Our package is similar to Python-fcl, which provides a Python binding of FCL that could
also be used in a ROS architecture. The main distinction is that our implementation is
written in C++, providing enhanced computational efficiency thanks to its compiled nature.
Furthermore, our package includes convenience functions to directly interact with ROS/ROS 2
messages and easily display results in RViz. The ros_collision_checking package also offers a
collision-checking system for 2D vehicles in a ROS environment. Our collision-checking system
instead extends the general capabilities of FCL for proximity querying any geometric model
and can thus be applied in numerous robotics contexts where proximity information about the
3D environment is beneficial.

The interface supplied by robot_collision_checking is especially practical for obstacle avoid-
ance and path planning in robotics use-cases. First, the robot’s collision geometry (e.g.,
extracted from its URDF model) and surrounding objects perceived by the robot’s sensors
(e.g., an OctoMap representation given depth data) can be added to a collision world that is
constructed and maintained through our robot_collision_checking interface. The resulting
collision and distance information exposed by this interface then enables safe plans for the
robot’s motion to be generated using standard motion planning algorithms. For instance, this
package could be employed to compute virtual repulsive forces based solely on the robot’s tool
pose, thereby enabling a potential fields method to navigate the tool through an environment
without requiring MoveIt’s installation overhead. Lastly, the robot_collision_checking pack-
age facilitates rapid checks for distances and collisions between arbitrary objects and is not solely
limited to robotic components. This versatility is particularly valuable for applications involving
complex environmental analysis, such as those encountered in human-robot interaction.

The robot_collision_checking library is currently being used by the constrained_manipula-
bility package, a motion planning framework for robot manipulators developed by the same
authors. Within the constrained_manipulability package there are more examples of using
the robot_collision_checking library with URDF files and collision meshes to calculate
collisions and/or distances between a robot and environmental objects, such as primitives and
OctoMaps.

Future Work
Our objective is to maintain robot_collision_checking in a manner that ensures seamless in-
tegration with future advancements in the core FCL library (Pan et al., 2012). As FCL continues

Zolotas et al. (2025). robot_collision_checking: A Lightweight ROS 2 Interface to FCL (Flexible Collision Library). Journal of Open Source
Software, 10(105), 7473. https://doi.org/10.21105/joss.07473.

2

https://github.com/coal-library/coal
https://github.com/BerkeleyAutomation/python-fcl
https://github.com/CoFra-CaLa/ros_collision_detection
https://github.com/philip-long/constrained_manipulability
https://github.com/philip-long/constrained_manipulability
https://doi.org/10.21105/joss.07473


to evolve, introducing new collision-checking functionality, support for more complex geometric
representations, or other enhancements, we aim to maintain our package and capitalize on
these developments. This forward-looking approach ensures that robot_collision_checking

remains robust, versatile, and aligned with state-of-the-art collision detection software.

Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be constructed as a potential conflict of interest.

Acknowledgements
Mark Zolotas is currently at Toyota Research Institute (TRI), Cambridge, MA, USA. This
paper describes work performed at Northeastern University and is not associated with TRI.

Taskin Padir holds concurrent appointments as a Professor of Electrical and Computer En-
gineering at Northeastern University and as an Amazon Scholar. This paper describes work
performed at Northeastern University and is not associated with Amazon.

References
Carpentier, J., Budhiraja, R., & Mansard, N. (2021, July). Proximal and Sparse Resolution of

Constrained Dynamic Equations. Robotics: Science and Systems 2021. https://hal.inria.
fr/hal-03271811

Coleman, D., Sucan, I., Chitta, S., & Correll, N. (2014). Reducing the barrier to entry of
complex robotic software: A moveit! Case study. Journal of Software Engineering for
Robotics, 5(1), 3–16.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap:
An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots.
https://doi.org/10.1007/s10514-012-9321-0

Kam, H. R., Lee, S.-H., Park, T., & Kim, C.-H. (2015). Rviz: A toolkit for real domain data
visualization. Telecommunication Systems, 60, 337–345.

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022). Robot operating
system 2: Design, architecture, and uses in the wild. Science Robotics, 7 (66), eabm6074.
https://doi.org/10.1126/scirobotics.abm6074

Pan, J., Chitta, S., & Manocha, D. (2012). FCL: A general purpose library for collision and
proximity queries. IEEE International Conference on Robotics and Automation, 3859–3866.
https://doi.org/10.1109/ICRA.2012.6225337

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A.
(2009). ROS: An open-source robot operating system. ICRA Workshop on Open Source
Software, 3.

Zolotas et al. (2025). robot_collision_checking: A Lightweight ROS 2 Interface to FCL (Flexible Collision Library). Journal of Open Source
Software, 10(105), 7473. https://doi.org/10.21105/joss.07473.

3

https://hal.inria.fr/hal-03271811
https://hal.inria.fr/hal-03271811
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.21105/joss.07473

	Summary
	Statement of Need
	Future Work
	Conflict of Interest
	Acknowledgements
	References

