The Journal of Open Source Software

DOI: 10.21105/joss.07474

Software
= Review &7
= Repository @
= Archive &0

Editor: Sophie Beck 7
Reviewers:

= @TomTranter
= Qritesh001
= @jakobhaervig

Submitted: 16 September 2024
Published: 04 February 2025

License

Authors of papers retain copyright
and release the work under a

Creative Commons Attribution 4.0
International License (CC BY 4.0).

PyProBE: Python Processing for Battery Experiments

Thomas Holland'?2, Daniel Cummins®, and Monica Marinescu'-

1 Department of Mechanical Engineering, Imperial College London, United Kingdom 2 The Faraday
Institution, United Kingdom 3 Research Computing Service, ICT, Imperial College London, United
Kingdom

Summary

PyProBE (Python Processing for Battery Experiments) is a Python package to process experi-
mental data in a standardised and reproducible way. Recognising that battery experiments
are often derivatives of standard procedures, PyProBE simplifies data processing to improve
performance and transparency. It was written with the following objectives:

1. Ease of use for those with little Python experience, with a natural language interface.

2. Accelerate battery data exploration with quick plotting and data visualisation, using
Polars under-the-hood for rapid DataFrame manipulation and a graphical user interface
(GUD).

3. Encourage transparent storage of battery data, with human and computer-readable
README-files and a readable API syntax.

4. Host a library of post-processing methods, so techniques can be easily added and
compared within a standardised code structure.

Statement of need

Multiple researchers have published the tools that they have developed to perform analysis
of experimental data. cellpy (Wind et al., 2024) reads data from multiple battery cyclers
and includes built-in methods for techniques like Incremental Capacity Analysis (ICA) and
summarisation. It filters data by passing specific cycle and step numbers as arguments to
methods, but other filtering must be done manually using Pandas (The pandas development
team, 2020).

BEEP (Herring et al., 2020) enables efficient filtering of experimental data with their “structuring”
approach to assemble summary statistics for machine learning. It does not include methods for
more detailed analysis, such as plotting ICA curves or performing degradation mode analysis.
DATTES (Redondo-Iglesias et al., 2023), in MatLab, is able to read from multiple cyclers and
includes analysis functions such as ICA and anomaly detection. The user interface of DATTES
is a single function that takes character codes such as 'GC' (for graphing capacity) to access
functionality.

In the Python community for battery research, PyBaMM (Sulzer et al., 2021) has gained large
developer support as an open-source environment for physics-based battery modelling. While
Python packages for battery experimental data processing clearly exist, none have yet gained
similar support. PyBaMM was written from the ground up to provide an open, modular framework
to battery researchers, whereas cellpy and BEEP were written as tools for specific projects.
DATTES being written in MatLab (a proprietary development ecosystem) inevitably limits its
attractiveness to the open source community.

Filtering a dataset to the section of interest is the first step of all data processing tasks, but can
be time-consuming and cumbersome. Researchers often write new scripts for each experiment,

Holland et al. (2025). PyProBE: Python Processing for Battery Experiments. Journal of Open Source Software, 10(106), 7474. https: 1

//doi.org/10.21105/joss.07474.

https://doi.org/10.21105/joss.07474
https://github.com/openjournals/joss-reviews/issues/7474
https://github.com/ImperialCollegeLondon/PyProBE
https://doi.org/10.5281/zenodo.14796110
https://orcid.org/0000-0002-9336-6065
https://github.com/TomTranter
https://github.com/ritesh001
https://github.com/jakobhaervig
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07474
https://doi.org/10.21105/joss.07474

The Journal of Open Source Software

in tools like MatLab, Python Pandas or Excel. These scripts are often not intended for sharing,
so they may be difficult to read by others, which slows down the exchange of data and methods
between researchers. Like PyBaMM, PyProBE has been written to be more user-friendly than
existing tools, making it usable for those with little Python experience.

PyBaMM includes a library of interchangeable models, that allows users to test different ap-
proaches. There is no equivalent for interchanging methods for battery data processing,
causing duplication of effort among researchers. A need therefore exists for an open-source
data processing package where researchers can develop new analysis tools within a single
framework. PyProBE's analysis module is written to be modular and intuitive, with a consistent
data structure and built-in data validation with Pydantic (Colvin et al., 2024). As new methods
are developed, they can be added and instantly compared to existing approaches.

PyProBE Operating Principles

Importing and Filtering Data

1 1
1 1
1 1
ey Procedure)
' '
1 1
1 1
4.24 H —— Initial Charge
' , —— Break-in Cycles
' ' —— Discharge Pulses
44 i
1 1
' ,
1 1
3.84 ! !
~ ! !
= : : ,
° ' ' Experiments
o 3.6 ! 1
© 1 !
=4 1 1
[e) 1 1
> | 1
3.4 |
1 1
1 1
1 1
1 1
3.2 | |
1 1
1 1
1 1
1 1
34 i
0 50 100 150

Procedure Time [hr]

Figure 1: The definition of procedure and experiment in PyProBE.

PyProBE has a hierarchy of objects containing experimental data. A Cell object contains all
the data associated with a physical battery that has undergone electrochemical testing. A
Procedure contains data associated with a particular programme run on a battery cycler. It
usually represents data from a single results file produced by the battery cycler. The details of
the procedure are included in a README.yaml file stored alongside the experimental data.

Including a README file alongside experimental data is good research practice in accordance
with the FAIR principles (Wilkinson et al., 2016). The PyProBE README includes descriptions
of cycler processes in PyBaMM Experiment format (Sulzer et al., 2021). This means it is
human-readable and enables integration with PyBaMM for running simulations that correspond
with the experimental data. The procedure can be split up into Experiment objects which
can then be referenced in PyProBE's hierarchical filter structure. An example README file is
shown in Figure 2.

Holland et al. (2025). PyProBE: Python Processing for Battery Experiments. Journal of Open Source Software, 10(106), 7474. https: 2

//doi.org/10.21105/joss.07474.

https://doi.org/10.21105/joss.07474
https://doi.org/10.21105/joss.07474

The Journal of Open Source Software

/— Experiment title
Initial Charge:

Steps:

1: Rest for 4 hours

2: Charge at 4mA until 4.2 V, Hold at 4.2 V until 0.04 A

3: Rest for 2 hours
Break-in Cycles:

Steps: 47 Steps list
4: Discharge at 4 mA until 3 V
5: Rest for 2 hours
6: Charge at 4 mA until 4.2 V, Hold at 4.2 V until 0.04 A
7: Rest for 2 hours

Cycle:

Start: 4 ‘ .
End: 7 PyBaMM experiment string

Count: 5 step descriptions

Discharge Pulses:
Steps:
9: Rest for 10 seconds
10: Discharge at 20 mA for 0.2 hours or until 3 V
11: Rest for 30 minutes

12: Rest for 1.5 hours .
Cycle: Step numbers corresponding

Start: 9 to indices used by cycler

End: 12
Count: 10

\ Cycle instructions:
start & end (inclusive) and

number of repeats

Figure 2: An example README.yaml file for the procedure in Figure 1.

Once imported into a PyProBE Procedure, individual cycles and steps can be indexed, with
separate methods for accessing charge, discharge, rest etc. processes. All filtering methods
produce a RawData object type which can be used for further analysis. The complete structure

of PyProBE can be seen in Figure 3.

Holland et al. (2025). PyProBE: Python Processing for Battery Experiments. Journal of Open Source Software, 10(106), 7474. https: 3
//doi.org/10.21105/joss.07474.

https://doi.org/10.21105/joss.07474
https://doi.org/10.21105/joss.07474

The Journal of Open Source Software

For batch processing

===

Parse into list of
experiment names procedure dictionary info dictionary

and step numbers

42
4
38
=
o
2 36
cell.procedure['Cell test'] S
34
32
3
o 50 100 150
Time [hr]
42
4
38
=
. 8 g" 36
cell.procedure['Cell test'] £
.experiment('Break-in Cycles') z -,
32
3
20 40 60 80 100 120 140
Time [hr]
42
4
= 3
cell.procedure['Cell test'] &
.experiment('Break-in Cycles')]
.cycle(2).charge(9) 36
3.4
72 74 76 78 80 82
Time [hr]

Figure 3: The structure of PyProBE, showing the imported data and setup files (red), PyProBE objects
(blue and yellow) and example filtering queries.

Holland et al. (2025). PyProBE: Python Processing for Battery Experiments. Journal of Open Source Software, 10(106), 7474. https: 4
//doi.org/10.21105/joss.07474.

https://doi.org/10.21105/joss.07474
https://doi.org/10.21105/joss.07474

The Journal of Open Source Software

Post-processing tools

result cell.procedure['Cell test']
.experiment('Break-in Cycles')
.cycle(2).charge(9)

RawData object

~
Result object «

result.get("Column Name [Unit]") 1D Array with column data, converted to requested unit

result.data Dataframe

result.plot(x="Time [s]", y="Voltage [V]") Line added to plot

P
—bL Pass to class or function in analysis module (see Figure 5 for an example) w

Figure 4: Some of the methods that can be called on Result objects, and the objects that they return.

Figure 4 shows how PyProBE RawData and Result objects can be used. RawData DataFrames
contain only the columns of the PyProBE standardised format, while Result DataFrames contain
any data columns produced from further analysis. The data stored in PyProBE Result object can
be returned as a NumPy (Harris et al., 2020) array or Polars dataframe for further manipulation.
They can also be immediately visualised with built-in plotting methods for matplotlib (Hunter,
2007) and hvplot (Rudiger, 2024), or passed to an included wrapper for seaborn (Waskom,

2021).

The analysis module contains classes and functions which, when passed a Result object, enable
additional functionality. The steps to smooth voltage data before differentiation are described
in Figure 5.

Holland et al. (2025). PyProBE: Python Processing for Battery Experiments. Journal of Open Source Software, 10(106), 7474. https: 5
//doi.org/10.21105/joss.07474.

https://doi.org/10.21105/joss.07474
https://doi.org/10.21105/joss.07474

The Journal of Open Source Software

pOCV_result = cell.procedure['Sample'].experiment('RPT').discharge(-1)

4.2

v

Voltage [V]
b

|

Result object for selected discharge

0 2 4 6 8 10

Step Time [hr]

pyprobe.analysis smoothing
call desired smoothing method

smoothed_data smoothing.downsample(input_data pOCV_result,
target_column='Voltage [V]',
sampling_interval=0.002)

2 —— Raw data

= = Smoothed data

3.8

y

3.6

oltage [V]

Result object with smoothed curve ———> S

3.4

3.2

0 2 4 6 8 10
Step Time [hr]

pyprobe.analysis differentiation
call desired differentiation method

dQdVv = differentiaton.gradient(input_data smoothed_data,
x = "Voltage [V]", y = "Capacity [Ah]")

0.1

Ah])/d(Voltage [V])

Result object with differentiated curve ——>7 | ..

d(Capacity

3 3.2 3.4 3.6 3.8 4 4.2
Voltage [V]

Figure 5: The workflow for smoothing and differentiating voltage data in PyProBE. The complete code
can be seen in the “Differentiating voltage data” example.

Performance

PyProBE is faster than manual filtering with Pandas. PyProBE uses Polars (Vink et al., 2024)
for DataFrame manipulation and .parquet files for data storage. Polars allows for Lazy

Holland et al. (2025). PyProBE: Python Processing for Battery Experiments. Journal of Open Source Software, 10(106), 7474. https: 6

//doi.org/10.21105/joss.07474.

https://doi.org/10.21105/joss.07474
https://doi.org/10.21105/joss.07474

The Journal of Open Source Software

computation, which optimises execution of DataFrame manipulation by delaying until a subset
of data is requested by the user. Figure 6 shows how for a week of data PyProBE is 2.7x faster
than Pandas v2.2.2 at filtering to a particular discharge in a sample dataset, but for a year
of data this increases to 52.7x. This was averaged over 100 runs on a 14 inch MacBook Pro
with M2 Pro and 16Gb RAM. The code for this benchmark can be found in the “Comparing
PyProBE Performance” example.

10°{ e-=---=---="""" ittt - ittt bt -
—e— PyProBE - 1 week of data
10-11 -®- PyProBE - 1 year of data

—e— Pandas - 1 week of data
-e- Pandas - 1 year of data

1024

Cumulative Time of Median Query (seconds)

Read file Select eiperiment Selectl cycle Seleci: step Return Ivoltage

Figure 6: Comparison between PyProBE and Pandas for importing, filtering and returning a DataFrame
when reading from a .parquet file with an average sampling rate of 1 Hz.

Acknowledgements

This work was generously supported via an EPSRC CASE (EP/W524323/1) award by Rimac
Technology, as well as the Faraday Institution Multiscale Modelling project (EP/S003053/1,
grant number FIRG025).

References

Colvin, S., Jolibois, E., Ramezani, H., Badaracco, A. G., Dorsey, T., Montague, D., Matveenko,
S., Trylesinski, M., Runkle, S., Hewitt, D., Hall, A., & Plot, V. (2024). Pydantic (Version
v2.10.4). https://docs.pydantic.dev/latest/

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Rio, J. F. del, Wiebe, M., Peterson, P., .. Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362. https:
//doi.org/10.1038/s41586-020-2649-2

Herring, P., Balaji Gopal, C., Aykol, M., Montoya, J. H., Anapolsky, A., Attia, P. M., Gent,
W., Hummelshgj, J. S., Hung, L., Kwon, H.-K., Moore, P., Schweigert, D., Severson, K.
A., Suram, S., Yang, Z., Braatz, R. D., & Storey, B. D. (2020). BEEP: A Python
library for Battery Evaluation and Early Prediction. SoftwareX, 11, 100506. https:
//doi.org/10.1016/j.softx.2020.100506

Holland et al. (2025). PyProBE: Python Processing for Battery Experiments. Journal of Open Source Software, 10(106), 7474. https: 7

//doi.org/10.21105/joss.07474.

https://docs.pydantic.dev/latest/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.softx.2020.100506
https://doi.org/10.1016/j.softx.2020.100506
https://doi.org/10.21105/joss.07474
https://doi.org/10.21105/joss.07474

The Journal of Open Source Software

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55

Redondo-Iglesias, E., Hassini, M., Venet, P., & Pelissier, S. (2023). DATTES: Data analysis
tools for tests on energy storage. SoftwareX, 24, 101584. https://doi.org/10.1016/].softx.
2023.101584

Rudiger, P. (2024). Holoviz/hvplot. HoloViz. https://github.com/holoviz/hvplot

Sulzer, V., Marquis, S. G., Timms, R., Robinson, M., & Chapman, S. J. (2021). Python
Battery Mathematical Modelling (PyBaMM). Journal of Open Research Software, 9(1).
https://doi.org/10.5334/jors.309

The pandas development team. (2020). Pandas-dev/pandas: pandas (Version 2.2.2). Zenodo.
https://doi.org/10.5281/zenodo.3509134

Vink, R., Gooijer, S. de, Beedie, A., Gorelli, M. E., Guo, W., Zundert, J. van, Peters, O.,
Hulselmans, G., nameexhaustion, Grinstead, C., Marshall, Burghoorn, G., chielP, Turner-
Trauring, ., Santamaria, M., Heres, D., Mitchell, L., Magarick, J., ibENPC, .. Brannigan,
L. (2024). Pola-rs/polars: Python Polars 1.4.1. Zenodo. https://doi.org/10.5281/zenodo.
13208786

Waskom, M. L. (2021). Seaborn: Statistical data visualization. Journal of Open Source
Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

Wilkinson, M. D., Dumontier, M., Aalbersberg, |j. J., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.-W., Silva Santos, L. B. da, Bourne, P. E., Bouwman, J., Brookes,
A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers,
R., .. Mons, B. (2016). The FAIR Guiding Principles for scientific data management and
stewardship. Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18

Wind, J., Ulvestad, A., Abdelhamid, M., & Mzhlen, J. P. (2024). Cellpy — an open-source
library for processing and analysis of battery testing data. Journal of Open Source Software,
9(97), 6236. https://doi.org/10.21105/joss.06236

Holland et al. (2025). PyProBE: Python Processing for Battery Experiments. Journal of Open Source Software, 10(106), 7474. https: 8

//doi.org/10.21105/joss.07474.

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1016/j.softx.2023.101584
https://doi.org/10.1016/j.softx.2023.101584
https://github.com/holoviz/hvplot
https://doi.org/10.5334/jors.309
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.13208786
https://doi.org/10.5281/zenodo.13208786
https://doi.org/10.21105/joss.03021
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.21105/joss.06236
https://doi.org/10.21105/joss.07474
https://doi.org/10.21105/joss.07474

	Summary
	Statement of need
	PyProBE Operating Principles
	Importing and Filtering Data
	Post-processing tools
	Performance

	Acknowledgements
	References

