
constrained_manipulability: A ROS 2 library to
Compute and Visualize Constrained Capacities for
Robotic Manipulators
Mark Zolotas 1*¶, Philip Long 2*, Keerthi Sagar 3, and Taskin Padir 1,4

1 Northeastern University, USA (at the time of this work) 2 Atlantic Technological University, Ireland 3
Irish Manufacturing Research Limited, Mullingar, Ireland 4 Amazon Robotics, USA ¶ Corresponding
author * These authors contributed equally.

DOI: 10.21105/joss.07481

Software
• Review
• Repository
• Archive

Editor: Chris Vernon
Reviewers:

• @askuric
• @JHartzer

Submitted: 15 August 2024
Published: 22 April 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
This paper presents constrained_manipulability, a C++ library to compute and visualize
a robot manipulator’s constrained motion capacities. Manipulability polytopes provide a
geometrical tool to evaluate the volume of free space surrounding the robotic arm when
considering both environmental and intrinsic robot constraints, such as collisions and joint
limits, respectively. Moreover, the polytopes defined by these convex constraints represent
feasible configurations for the whole robot, that can be utilized in inverse kinematics (IK)
optimization algorithms to produce collision-free motion trajectories.

The library is encapsulated in a Robot Operating System (ROS) package (Quigley et al.,
2009). We include ROS 1 and ROS 2 (Macenski et al., 2022) implementations of the
core C++ library. The constrained_manipulability package also heavily depends on our
robot_collision_checking package (Zolotas et al., 2025), a ROS interface for collision
checking via the Flexible Collision Library (FCL) (Pan et al., 2012).

The main program of the constrained_manipulability package reads a Unified Robot
Description Format (URDF) kinematic chain from a user-defined root of the robot (e.g., the
robot’s base frame) to a tip (e.g., the end-effector or tool). Joint position and velocity limits
are also read from the URDF, while a collision world is maintained to express environmental
constraints on the robot’s motion. A variety of collision objects can be added or removed
using common ROS message types, such as OctoMaps (Hornung et al., 2013), mesh files,
or solid primitives. These joint limit and obstacle constraints are then stacked together to
define different polytopes, such as the allowable motion polytope (Long et al., 2019) and the
constrained velocity polytope (Long & Padır, 2018).

Polytopes computed by constrained_manipulability are published using ROS messages
from the visualization_msgs::msg namespace. The primary type is MarkerArray, which
utilizes Marker::TRIANGLE_LIST markers for facets and Marker::SPHERE_LIST markers for
vertices. As a result, the manipulability polytopes calculated by our package for a given
robot manipulator can also be visualized using standard RViz (Kam et al., 2015) tools.
Additionally, the generated polytopes are published in vertex and hyperplane form, which is
easily interpretable by third-party libraries.

Statement of Need
Generating complex constraint geometries efficiently is a significant challenge for real-time
robot manipulation. For applications, like motion planning or remote teleoperation, being
able to represent the space of obstacle-free allowable motion around an end-effector is vital.

Zolotas et al. (2025). constrained_manipulability: A ROS 2 library to Compute and Visualize Constrained Capacities for Robotic Manipulators.
Journal of Open Source Software, 10(108), 7481. https://doi.org/10.21105/joss.07481.

1

https://orcid.org/0000-0002-7672-940X
https://orcid.org/0000-0002-0784-8720
https://orcid.org/0000-0003-0008-5414
https://orcid.org/0000-0001-5123-5801
https://doi.org/10.21105/joss.07481
https://github.com/openjournals/joss-reviews/issues/7481
https://github.com/philip-long/constrained_manipulability
https://doi.org/10.5281/zenodo.15258944
https://energyenvironment.pnnl.gov/staff/staff_info.asp?staff_num=1834
https://orcid.org/0000-0002-3406-6214
https://github.com/askuric
https://github.com/JHartzer
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07481

Given such a representation a collision-free IK solution can be obtained to maximize the free
space of a robot moving in a constrained environment. Manipulability polytopes represent
manipulability capacities, e.g., the capacity for the robot to transmit velocities and forces from
the configuration space to the task space. The benefit of using convex polytopes is that they
capture exact velocity bounds, rather than the approximation provided by for example ellipsoids
(Yoshikawa, 1984). While the aforementionned ellipsoids have been the dominant paradigm
due to historic computational constraints, more efficient polytope generation methods (Sagar
et al., 2023; Skuric et al., 2023) coupled with more computation availability has led to an
increased usage. Furthermore, since a polytope is defined by a set of inequality constraints,
additional constraints can be easily incorporated into existing polytopes, e.g., mobile robot
toppling constraints (Rasheed et al., 2018), friction cones (Caron et al., 2016), and maximum
danger values.

The constrained_manipulability ROS 2 package aims to fulfil this need for constrained robot
capacity calculation by supplying the robotics community with a fast C++ implementation
that computes various types of polytopes. These geometrical constructs can also be visualized
for workspace analysis or to guide an operator through the Cartesian motions available due to
joint limits, kinematic constraints, and obstacles in the workspace, as illustrated in Figure 1.
The utility of these visualizations has proven advantageous in remote teleoperation scenarios
involving virtual reality headsets (Zolotas et al., 2021). Moreover, the package interfaces
with the robot_collision_checking package (Zolotas et al., 2025) to perform distance and
collision checking between a robot manipulator and the environment.

There are currently few software libraries capable of computing robot manipulator capacities as
polytopes while seamlessly interfacing with popular robotics middleware, such as ROS. Among
them, the one most similar to constrained_manipulability is pycapacity (Skuric et al.,
2023), which is implemented in Python rather than C++. Unlike pycapacity, where velocity
and force polytopes are solely computed based on the intrinsic constraints of a kinematic
chain, our package accounts for additional constraints, such as positional joint limits and
environmental obstacles, to represent the constrained motion space.

Zolotas et al. (2025). constrained_manipulability: A ROS 2 library to Compute and Visualize Constrained Capacities for Robotic Manipulators.
Journal of Open Source Software, 10(108), 7481. https://doi.org/10.21105/joss.07481.

2

https://doi.org/10.21105/joss.07481

Figure 1: Collision-free path for a robot manipulator visualized as a trajectory of polytopes generated by
maximizing the volume of allowable motion around the robot’s end-effector.

Polytope and Manipulator Model
A polytope, 𝒫, can be represented as the convex hull of its vertex set, or as a volume bounded
by a finite number of half-spaces, known as the 𝒱-representation and ℋ-representation, which
are denoted as 𝒫𝑉 and 𝒫𝐻, respectively. Converting between the 𝒱 and ℋ representations
can be carried out in several ways, however the constrained_manipulability package uses
the double description method (Fukuda & Prodon, 1996).

The constrained_manipulability provides two types of polytope representations: 1. con-
strained motion polytopes, which modify the classic manipulability velocity polytope (Kokkinis
& Paden, 1989) to include joint limits and capacity reductions due to nearby obstacles; and 2.
allowable motion polytopes, which are a linearization of their constrained counterpart used
to generate a measure of free space or allowable motion in which a robot can move while
satisfying all constraints.

In both cases, the polytope is constructed as follows. First, a system of linear inequalities is
constructed in joint space, for instance based on joint velocity limits:

𝒬𝐻 = [𝕀𝑛
−𝕀𝑛

] q̇ ≤ [q̇𝑚𝑎𝑥

−q̇𝑚𝑖𝑛] , (1)

where q̇𝑚𝑎𝑥 and ̇q𝑚𝑖𝑛 are the robot’s maximum and minimum joint velocities. Using the
double description method, an equivalent polytope in the 𝒱-representation (i.e., defined by its

Zolotas et al. (2025). constrained_manipulability: A ROS 2 library to Compute and Visualize Constrained Capacities for Robotic Manipulators.
Journal of Open Source Software, 10(108), 7481. https://doi.org/10.21105/joss.07481.

3

https://doi.org/10.21105/joss.07481

vertices) is written as:
𝒬𝑉 = { ̇q𝑣

1, q̇𝑣
2, … , q̇𝑣

𝑞 }, (2)

where q̇𝑣
𝑖 denotes the 𝑖𝑡ℎ vertex of the polytope 𝒬, given 𝑞 vertices in 𝑛-dimensional space. A

Cartesian polytope, denoted as ℳ𝒫, can then be obtained by transforming the vertices of
Equation 2 to Cartesian space using the forward kinematics. ℳ𝒫’s vertex set representation
of 𝑝 vertices in 3-dimensional space is given as:

ℳ𝒫𝑉 = { 𝜈𝑣
1, … , 𝜈𝑣

𝑝 } = { J𝑛q̇𝑣
1, … , J𝑛 ̇q𝑣

𝑝 }, (3)

with 𝜈𝑣
𝑗 = J𝑛 ̇q𝑣

𝑗 and 𝑝 ≤ 𝑞. The convexity of a polytope is preserved under affine transforma-
tion, thus a bounded volume of ℳ𝒫 that represents the system’s manipulability can easily be
obtained to serve as an exact indicator of robot performance.

For constrained motion polytopes, the following constraints are supported: joint velocity limits,
joint velocity damping due to positional joint limits, and joint velocity damping due to obstacle
proximity to the kinematic chain. For allowable motion polytopes the following constraints are
supported: positional joint limits, positional limits due to obstacle proximity to the kinematic
chain, and linearization limits. Increasing the values of the linearization expands the free space
virtual fixture at a cost of reduced fidelity. Our implementation uses a scalar linearization
limit for all joints that can also be altered at run time, e.g., could be increased to enlarge the
solution or shrunk to guide the user towards a defined goal configuration, as defined in Eq. 20
of Zolotas et al. (2021). Finally, in our implementation, we select at every instant the point
along each link nearest to all environmental obstacles. Hence, the system considers the set
of instantaneous collision-free joint motion for each link along the robot’s kinematic chain,
considering all surrounding obstacles.

A more detailed formulation of the polytopes discussed here is available in Section II.B of Long
et al. (2019).

Block Diagram
Any joint position and velocity limits are extracted from the robot’s URDF description via
ROS 2 parameter operations. Polytopes are calculated as described above using these limits
and by obtaining the minimum distance from each link on the robot to objects in the collision
world. FCL (Pan et al., 2012) is required to compute these distances and is accessible via the
interface package: robot_collision_checking (Zolotas et al., 2025). Polytopes in Cartesian
space can then be returned from getter functions:

Polytope getConstrainedAllowableMotionPolytope(

const sensor_msgs::msg::JointState& joint_state,

bool show_polytope,

Eigen::MatrixXd& AHrep,

Eigen::VectorXd& bHrep,

Eigen::Vector3d& offset_position,

const std::vector<double>& color_pts,

const std::vector<double>& color_line);

where AHrep and bHrep represent joint space polytope constraints.

A diagram summarizing the constrained_manipulability package architecture and ROS 2
communication flow is displayed in Figure 2.

Zolotas et al. (2025). constrained_manipulability: A ROS 2 library to Compute and Visualize Constrained Capacities for Robotic Manipulators.
Journal of Open Source Software, 10(108), 7481. https://doi.org/10.21105/joss.07481.

4

https://doi.org/10.21105/joss.07481

Figure 2: Block diagram for the constrained_manipulability ROS 2 package.

Future Work
The constrained_manipulability package will continue to be maintained as a ROS 2 library
for computing and vizualizing a robot manipulator’s constrained capacities as polytopes.
To extend the widespread utility of this package, future work could also involve creating a
standalone library that is independent of ROS. For example, by creating Python bindings for
the core C++ library and its underlying algorithms. This would enable easier interfacing with
other popular robotics software, such as Pinocchio (Carpentier et al., 2021).

Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be constructed as a potential conflict of interest.

Acknowledgements
Mark Zolotas is currently at Toyota Research Institute (TRI), Cambridge, MA, USA. This
paper describes work performed at Northeastern University and is not associated with TRI.

Taskin Padir holds concurrent appointments as a Professor of Electrical and Computer En-
gineering at Northeastern University and as an Amazon Scholar. This paper describes work
performed at Northeastern University and is not associated with Amazon.

References
Caron, S., Pham, Q.-C., & Nakamura, Y. (2016). Zmp support areas for multicontact

mobility under frictional constraints. IEEE Transactions on Robotics, 33(1), 67–80. https:
//doi.org/10.1109/tro.2016.2623338

Carpentier, J., Budhiraja, R., & Mansard, N. (2021, July). Proximal and Sparse Resolution of
Constrained Dynamic Equations. Robotics: Science and Systems 2021. https://doi.org/10.
15607/rss.2021.xvii.017

Fukuda, K., & Prodon, A. (1996). Double description method revisited. Combinatorics and
Computer Science, 1120, 91. https://doi.org/10.1007/3-540-61576-8_77

Zolotas et al. (2025). constrained_manipulability: A ROS 2 library to Compute and Visualize Constrained Capacities for Robotic Manipulators.
Journal of Open Source Software, 10(108), 7481. https://doi.org/10.21105/joss.07481.

5

https://doi.org/10.1109/tro.2016.2623338
https://doi.org/10.1109/tro.2016.2623338
https://doi.org/10.15607/rss.2021.xvii.017
https://doi.org/10.15607/rss.2021.xvii.017
https://doi.org/10.1007/3-540-61576-8_77
https://doi.org/10.21105/joss.07481

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap:
An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots,
34, 189–206. https://doi.org/10.1007/s10514-012-9321-0

Kam, H. R., Lee, S.-H., Park, T., & Kim, C.-H. (2015). Rviz: A toolkit for real domain
data visualization. Telecommunication Systems, 60, 337–345. https://doi.org/10.1007/
s11235-015-0034-5

Kokkinis, T., & Paden, B. (1989). Kinetostatic performance limits of cooperating robot
manipulators using force-velocity polytopes. Proceedings of the ASME Winter Annual
Meeting, 151–155.

Long, P., Keleştemur, T., Önol, A. Ö., & Padir, T. (2019). Optimization-based human-in-the-
loop manipulation using joint space polytopes. International Conference on Robotics and
Automation, 204–210. https://doi.org/10.1109/ICRA.2019.8794071

Long, P., & Padır, T. (2018). Evaluating robot manipulability in constrained environments
by velocity polytope reduction. IEEE-RAS International Conference on Humanoid Robots,
497–502. https://doi.org/10.1109/HUMANOIDS.2018.8624962

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022). Robot operating
system 2: Design, architecture, and uses in the wild. Science Robotics, 7 (66), eabm6074.
https://doi.org/10.1126/scirobotics.abm6074

Pan, J., Chitta, S., & Manocha, D. (2012). FCL: A general purpose library for collision and
proximity queries. IEEE International Conference on Robotics and Automation, 3859–3866.
https://doi.org/10.1109/ICRA.2012.6225337

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A.
(2009). ROS: An open-source robot operating system. ICRA Workshop on Open Source
Software, 3.

Rasheed, T., Long, P., Marquez-Gamez, D., & Caro, S. (2018). Tension distribution algorithm
for planar mobile cable-driven parallel robots. Cable-Driven Parallel Robots: Proceedings
of the Third International Conference on Cable-Driven Parallel Robots, 268–279. https:
//doi.org/10.1007/978-3-319-61431-1_23

Sagar, K., Caro, S., Padır, T., & Long, P. (2023). Polytope-based continuous scalar performance
measure with analytical gradient for effective robot manipulation. IEEE Robotics and
Automation Letters, 8(11), 7289–7296. https://doi.org/10.1109/LRA.2023.3313926

Skuric, A., Padois, V., & Daney, D. (2023). Pycapacity: A real-time task-space capacity
calculation package for robotics and biomechanics. Journal of Open Source Software,
8(89), 5670. https://doi.org/10.21105/joss.05670

Yoshikawa, T. (1984). Analysis and control of robot manipulators with redundancy. Interna-
tional Symposium on Robotics Research, 735–747.

Zolotas, M., Long, P., & Padir, T. (2025). Robot_collision_checking: A lightweight ROS
2 interface to FCL (flexible collision library). Journal of Open Source Software, 10(105),
7473. https://doi.org/10.21105/joss.07473

Zolotas, M., Wonsick, M., Long, P., & Padır, T. (2021). Motion Polytopes in Virtual Reality
for Shared Control in Remote Manipulation Applications. Frontiers in Robotics and AI, 8,
286. https://doi.org/10.3389/frobt.2021.730433

Zolotas et al. (2025). constrained_manipulability: A ROS 2 library to Compute and Visualize Constrained Capacities for Robotic Manipulators.
Journal of Open Source Software, 10(108), 7481. https://doi.org/10.21105/joss.07481.

6

https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1109/ICRA.2019.8794071
https://doi.org/10.1109/HUMANOIDS.2018.8624962
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.1007/978-3-319-61431-1_23
https://doi.org/10.1007/978-3-319-61431-1_23
https://doi.org/10.1109/LRA.2023.3313926
https://doi.org/10.21105/joss.05670
https://doi.org/10.21105/joss.07473
https://doi.org/10.3389/frobt.2021.730433
https://doi.org/10.21105/joss.07481

	Summary
	Statement of Need
	Polytope and Manipulator Model
	Block Diagram

	Future Work
	Conflict of Interest
	Acknowledgements
	References

