
ReadmeReady: Free and Customizable Code
Documentation with LLMs - A Fine-Tuning Approach
Sayak Chakrabarty 1 and Souradip Pal 2

1 Northwestern University 2 Purdue University
DOI: 10.21105/joss.07489

Software
• Review
• Repository
• Archive

Editor: Chris Vernon
Reviewers:

• @Manvi-Agrawal
• @camilochs

Submitted: 13 November 2024
Published: 12 April 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Automated documentation of programming source code is a challenging task with significant
practical and scientific implications for the developer community. ReadmeReady is a large
language model (LLM)-based application that developers can use as a support tool to generate
basic documentation for any publicly available or custom repository. Over the last decade,
several research have been done on generating documentation for source code using neural
network architectures. With the recent advancements in LLM technology, some open-source
applications have been developed to address this problem. However, these applications
typically rely on the OpenAI APIs, which incur substantial financial costs, particularly for large
repositories. Moreover, none of these open-source applications offer a fine-tuned model or
features to enable users to fine-tune custom LLMs. Additionally, finding suitable data for
fine-tuning is often challenging. Our application addresses these issues.

Statement of Need
The integration of natural and programming languages is a research area that addresses tasks
such as automatic documentation of source code, code generation from natural language
descriptions, and searching for code using natural language queries. These tasks are highly
practical, as they can significantly enhance programmer efficiency, and they are scientifically
intriguing due to their complexity and the proposed relationships between natural language,
computation, and reasoning (Chomsky, 1956; Graves et al., 2014; Miller, 2003).

State of the Field
Recently, large language models (LLMs) have become increasingly significant, demonstrating
human-like abilities across various fields (Brown et al., 2020; Ouyang et al., 2022; Radford et
al., 2019). LLMs typically employ transformer architecture variants and are trained on massive
data volumes to detect patterns (Vaswani et al., 2017).

We present an LLM-based application that developers can use as a support tool to generate
basic documentation for any code repository. Some open-source applications have been
developed to address this issue, to name a few:

• AutoDoc-ChatGPT (Awekrx, 2023)
• AutoDoc (Labs, 2023)
• Auto-GitHub-Docs-Generator (Microsoft, 2023)

However, these applications suffer from two major issues. Firstly, all of them are built on top
of the OpenAI APIs, requiring users to have an OpenAI API key and incurring a cost with each
API request. Generating documentation for a large repository could result in costs reaching
hundreds of dollars. Our application allows users to choose among OpenAI’s GPT, Meta’s

Chakrabarty, & Pal. (2025). ReadmeReady: Free and Customizable Code Documentation with LLMs - A Fine-Tuning Approach. Journal of Open
Source Software, 10(108), 7489. https://doi.org/10.21105/joss.07489.

1

https://orcid.org/0009-0004-6179-389X
https://orcid.org/0000-0002-5781-3032
https://doi.org/10.21105/joss.07489
https://github.com/openjournals/joss-reviews/issues/7489
https://github.com/souradipp76/ReadMeReady
https://doi.org/10.5281/zenodo.15201191
https://energyenvironment.pnnl.gov/staff/staff_info.asp?staff_num=1834
https://orcid.org/0000-0002-3406-6214
https://github.com/Manvi-Agrawal
https://github.com/camilochs
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07489


Llama2, and Google’s Gemma models. Notably, apart from the first, the other models are
open-source and incur no charges, allowing documentation to be generated for free.

Secondly, none of the existing open-source applications provide a fine-tuned model or an option
for users to fine-tune. Our application offers a fine-tuning option using QLoRA (Dettmers
et al., 2023), which can be trained on the user’s own dataset. It is important to note that
using this feature requires access to powerful GPU clusters. Some existing applications provide
a command-line tool for interacting with the entire repository, allowing users to ask specific
questions about the repository but not generating a README file.

Methodology
The application prompts the user to enter the project’s name, GitHub URL, and select the
desired model from the following options:

• gpt-3.5-turbo (OpenAI, 2023a)
• gpt-4 (OpenAI, 2023b)
• gpt-4-32k (OpenAI, 2023c)
• TheBloke/Llama-2-7B-Chat-GPTQ (quantized) (TheBloke, 2023b)
• TheBloke/CodeLlama-7B-Instruct-GPTQ (quantized) (TheBloke, 2023a)
• meta-llama/Llama-2-7b-chat-hf (Meta, 2023b)
• meta-llama/CodeLlama-7b-Instruct-hf (Meta, 2023a)
• google/gemma-2b-it (Google, 2023b)
• google/codegemma-2b-it (Google, 2023a)

For our experimentation and tests, we used 1 × NVIDIA Tesla V100 with 16GB of GPU
memory which is ideal for running the application.

Document Retrieval: Our application indexes the codebase through a depth-first traversal of
all repository contents and utilizes an LLM to generate documentation. All files are converted
into text, tokenized, and then chunked, with each chunk containing 1000 tokens. The
application employs the sentence-transformers/all-mpnet-base-v2 (HuggingFace, 2023)
sentence encoder to convert each chunk into a 768-dimensional embedding vector, which is
stored in an in-memory vector store. When a query is provided, it is converted into a similar
vector using the same sentence encoder. The neighbor nearest to the query embedding vector
is searched using KNN (k=4) from the vector store, utilizing cosine similarity as the distance
metric. For the KNN search, we use the HNSWLib library, which implements an approximate
nearest-neighbor search based on hierarchical navigable small-world graphs (Malkov & Yashunin,
2018). This methodology provides the relevant sections of the source code, aiding in answering
the prompted question. The entire methodology for Retrieval Augmented Generation (RAG)
and fine-tuning is illustrated in Figure 1.

Chakrabarty, & Pal. (2025). ReadmeReady: Free and Customizable Code Documentation with LLMs - A Fine-Tuning Approach. Journal of Open
Source Software, 10(108), 7489. https://doi.org/10.21105/joss.07489.

2

https://doi.org/10.21105/joss.07489


Figure 1: Input to Output Workflow showing the Retrieval and Generator modules. The retrieval module
uses HNSW algorithm to create a context for the prompt to the Language model for text generation.

Prompt Configuration: Prompt engineering is accomplished using the Langchain API. For our
purpose, a prompt template has been used. This template includes placeholders for questions,
which users can edit and modify as needed. This flexibility allows the README to be generated
according to the user’s specific requirements. Our default README structure includes sections
on description, requirements, installation, usage, contributing methods, and licensing, which
align with standard documentation practices. The temperature for text generation is kept
at the default value of 0.2. The current prompts are developer-focused and assume that the
repository is code-centric.

Fine Tuning
In our work, we fine-tune only one model, TheBloke/Llama-2-7B-Chat-GPTQ (TheBloke,
2023b), which is a 4-bit quantized model with 1.13 billion parameters. It supports a maximum
sequence length of 4096 tokens and requires 3.9 GB of memory.

Data Collection
We limit our scope to Python-based repositories; however, this approach is easily adaptable
to multiple programming languages. A CSV file was created with three features: questions,
context, and answers. Questions were derived from README file headings and subheadings,
identified by markdown signatures # or ##. Answers correspond to the text under these
headings.

The entire source code from the repositories is concatenated into a single string and separated
into document chunks of 1000 tokens employing LangChain’s text-splitter. Using the sentence-
transformers/all-mpnet-base-v2 (HuggingFace, 2023) sentence encoder, these chunks were
converted into 768-dimensional vectors. Each question is then converted into a 768-dimensional
vector and subjected to a KNN (𝑘 = 4) search using HNSW (Malkov & Yashunin, 2018) to
find the closest match from the entire set of document embeddings, stored as the context.

Data Preprocessing: Following the creation of the CSV file, we pre-process the data using
regex patterns to clean the text. Since the context only captures source code, this eliminates
the possibility of using offensive content. Regex is used to remove hashtags, email addresses,
usernames, image URLs, and other personally identifiable information. Note that only reposito-
ries written entirely in English are used, with other languages filtered out. Prompt engineering
in our source code ensures that the prompts are designed to avoid generating any personally
identifiable data or offensive content.

Chakrabarty, & Pal. (2025). ReadmeReady: Free and Customizable Code Documentation with LLMs - A Fine-Tuning Approach. Journal of Open
Source Software, 10(108), 7489. https://doi.org/10.21105/joss.07489.

3

https://doi.org/10.21105/joss.07489


Experiments
We conducted the fine-tuning experiment on a small dataset consisting of randomly selected
190 README files, which may not address our default documentation questions. For each
README, we examine its sections and subsections, frame relevant questions, and use the
answers generated by our tool for training. For evaluation, we selected the rest of the 10
repositories and compared the original answers with the autogenerated documentation using
BLEU and BERT scores to assess our model’s performance.

Before Fine-tuning
We conducted a series of experiments utilizing the TheBloke/Llama-2-7B-Chat-GPTQ model
(TheBloke, 2023b) to demonstrate the functionality and efficacy of our proposed pipeline. The
accompanying codebase is designed to be flexible, allowing the user to easily switch between
different large language models (LLMs) by simply modifying the configuration file. Given the
characteristics of LLMs, models with a greater number of parameters are generally expected to
deliver enhanced performance.

After Fine-tuning
We utilized the PEFT library from Hugging Face, which supports several Parameter Effi-
cient Fine-Tuning (PEFT) methods. This approach is cost-effective for fine-tuning large
language models (LLMs), particularly on lightweight hardware. The training configuration and
hyperparameters are detailed in Table 1 and Table 2 respectively.

Table 1: QLoRA Configuration

Parameter Value
r 2
lora_alpha 32
lora_dropout 0.05
bias None
task_type CAUSAL_LM

Table 2: Training Hyper-parameters

Parameter Value
per_device_train_batch_size 1
gradient_accumulation_steps 1
num_train_epochs 3
learning_rate 1e-4
fp16 True
optim paged_adamw_8bit
lr_scheduler_type cosine
warmup_ratio 0.01

References
Awekrx. (2023). AutoDoc-ChatGPT. https://github.com/awekrx/AutoDoc-ChatGPT.

Chakrabarty, & Pal. (2025). ReadmeReady: Free and Customizable Code Documentation with LLMs - A Fine-Tuning Approach. Journal of Open
Source Software, 10(108), 7489. https://doi.org/10.21105/joss.07489.

4

https://github.com/awekrx/AutoDoc-ChatGPT
https://doi.org/10.21105/joss.07489


Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., & others. (2020). Language Models are Few-
Shot Learners. Advances in Neural Information Processing Systems, 33, 1877–1901.
https://doi.org/10.48550/arXiv.2005.14165

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on
Information Theory, 2(3), 113–124. https://doi.org/10.1109/TIT.1956.1056813

Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023). QLoRA: Efficient
Finetuning of Quantized LLMs. arXiv Preprint arXiv:2305.14314. https://doi.org/10.
48550/arXiv.2305.14314

Google. (2023a). Codegemma-2b-it. https://github.com/google/codegemma-2b-it.

Google. (2023b). Gemma-2b-it. https://github.com/google/gemma-2b-it.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing Machines. arXiv Preprint
arXiv:1410.5401. https://doi.org/10.48550/arXiv.1410.5401

HuggingFace. (2023). Sentence transformers: All-mpnet-base-v2. https://huggingface.co/
sentence-transformers/all-mpnet-base-v2.

Labs, C. (2023). AutoDoc. https://github.com/context-labs/autodoc.

Malkov, Y. A., & Yashunin, D. A. (2018). Efficient and robust approximate nearest neighbor
search using Hierarchical Navigable Small World graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(4), 824–836. https://doi.org/10.1109/TPAMI.2018.
2889473

Meta. (2023a). CodeLlama-7b-instruct-hf. https://github.com/meta-llama/CodeLlama-7b-Instruct-hf.

Meta. (2023b). Llama-2-7b-chat-hf. https://github.com/meta-llama/Llama-2-7b-chat-hf.

Microsoft. (2023). Auto-GitHub-docs-generator. https://github.com/microsoft/
auto-github-docs-generator.

Miller, G. A. (2003). The cognitive revolution: a historical perspective. Trends in Cognitive
Sciences, 7 (3), 141–144. https://doi.org/10.1016/S1364-6613(03)00029-9

OpenAI. (2023a). Gpt-3.5-turbo. https://github.com/openai/gpt-3.5-turbo.

OpenAI. (2023b). Gpt-4. https://github.com/openai/gpt-4.

OpenAI. (2023c). Gpt-4-32k. https://github.com/openai/gpt-4-32k.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A., & others. (2022). Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems, 35, 27730–27744.
https://doi.org/10.48550/arXiv.2203.02155

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., & others. (2019).
Language Models are Unsupervised Multitask Learners. OpenAI Blog, 1(8), 9.

TheBloke. (2023a). CodeLlama-7B-instruct-GPTQ. https://github.com/TheBloke/
CodeLlama-7B-Instruct-GPTQ.

TheBloke. (2023b). Llama-2-7B-chat-GPTQ. https://github.com/TheBloke/Llama-2-7B-Chat-GPTQ.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
& Polosukhin, I. (2017). Attention is All You Need. Advances in Neural Information
Processing Systems, 30. https://doi.org/10.48550/arXiv.1706.03762

Chakrabarty, & Pal. (2025). ReadmeReady: Free and Customizable Code Documentation with LLMs - A Fine-Tuning Approach. Journal of Open
Source Software, 10(108), 7489. https://doi.org/10.21105/joss.07489.

5

https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://github.com/google/codegemma-2b-it
https://github.com/google/gemma-2b-it
https://doi.org/10.48550/arXiv.1410.5401
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/context-labs/autodoc
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://github.com/meta-llama/CodeLlama-7b-Instruct-hf
https://github.com/meta-llama/Llama-2-7b-chat-hf
https://github.com/microsoft/auto-github-docs-generator
https://github.com/microsoft/auto-github-docs-generator
https://doi.org/10.1016/S1364-6613(03)00029-9
https://github.com/openai/gpt-3.5-turbo
https://github.com/openai/gpt-4
https://github.com/openai/gpt-4-32k
https://doi.org/10.48550/arXiv.2203.02155
https://github.com/TheBloke/CodeLlama-7B-Instruct-GPTQ
https://github.com/TheBloke/CodeLlama-7B-Instruct-GPTQ
https://github.com/TheBloke/Llama-2-7B-Chat-GPTQ
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.21105/joss.07489

	Summary
	Statement of Need
	State of the Field
	Methodology
	Fine Tuning
	Data Collection

	Experiments
	Before Fine-tuning
	After Fine-tuning
	Table 1: QLoRA Configuration
	Table 2: Training Hyper-parameters


	References

