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Statement of Need
At this moment, there are a few existing tools and packages that can be used to handle stellar
evolutionary tracks and to estimate stellar mass and age for pre-main sequence stars. For
example, isochrones (Morton, 2015) provides a Python interface to access the MIST grids
(Choi et al., 2016; Dotter, 2016), and the PARSEC team provides a web interface to access
different versions of their tracks together with some useful web-based tools. More recently,
Squicciarini & Bonavita (2022) developed and published another Python package MADYS, which
can be used to derive ages and masses for pre-main sequence stars from multi-wavelengths
photometric data with the extinction corrected according to extinction maps and laws. This
code could also utilize different stellar evolutionary models. MADYS provides easy access to
obtaining photometric age and mass estimates for large groups of young stellar or substellar
objects.

Here we introduce ysoisochrone, a Python package that utilizes stellar evolutionary tracks to
estimate stellar masses and ages of pre-main sequence stars with a Bayesian framework. While
several papers in the literature utilize this method (e.g., Fernandes et al., 2023; Jørgensen
& Lindegren, 2005; Pascucci et al., 2016), an open-source tool implementing this method is
not available. ysoisochrone fills this gap and provides a uniform platform to handle different
evolutionary models with easy access to Bayesian framework along with tutorials and detailed
documentation for first users.

Background and Methods
There has been a long history of estimating stellar ages and masses from stellar evolutionary
models (e.g., Baraffe et al., 2015; Feiden, 2016; Siess et al., 2000). Different methods have
been employed, from finding the closest track to an object’s luminosity and temperature (e.g.,
Manara et al., 2023) to employing a Bayesian approach which enables estimating uncertainties
on the inferred ages and masses (e.g., Andrews et al., 2013; Gennaro et al., 2012; Jørgensen
& Lindegren, 2005). Our primary method is a Bayesian inference approach, and the Python
code builds on the IDL version developed by Pascucci et al. (2016). The code estimates the
stellar mass, age, and associated uncertainties by comparing a star’s effective temperature
(𝑇eff), bolometric luminosity (𝐿bol), and their uncertainties with different stellar evolutionary
models, including those specifically developed for young stellar objects (YSOs). The conditional

Deng et al. (2025). ysoisochrone: A Python package to estimate masses and ages for YSOs. Journal of Open Source Software, 10(106), 7493.
https://doi.org/10.21105/joss.07493.

1

https://orcid.org/0000-0003-0777-7392
https://orcid.org/0000-0001-7962-1683
https://orcid.org/0000-0002-3853-7327
https://doi.org/10.21105/joss.07493
https://github.com/openjournals/joss-reviews/issues/7493
https://github.com/DingshanDeng/ysoisochrone
https://doi.org/10.5281/zenodo.14847202
https://warrickball.gitlab.io/
https://orcid.org/0000-0002-4773-1017
https://github.com/heloises
https://github.com/vsquicciarini
https://creativecommons.org/licenses/by/4.0/
https://github.com/timothydmorton/isochrones
https://waps.cfa.harvard.edu/MIST/
http://stev.oapd.inaf.it/PARSEC/tools.html
https://madys.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.07493


likelihood function assumes log-uniform priors and can be written as:

ℒ(log𝑇𝑖, log𝐿𝑖 ∣ log𝑇obs, log𝐿obs) =
1
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𝜎log𝐿obs

× exp(−1
2
[(log𝑇obs − log𝑇𝑖)2

𝜎2
log𝑇obs

+ (log𝐿obs − log𝐿𝑖)2

𝜎2
log𝐿obs

]) ,
(1)

where the 𝑇 and 𝐿 are the effective temperature and bolometric luminosity, respectively. 𝑇𝑖, 𝐿𝑖
are the values from the evolutionary model grids, and 𝑇obs, 𝐿obs are the observed values for
each target with their uncertainties (1 𝜎 from the assumed Gaussian distribution in log-scale)
described as 𝜎log𝑇obs

, 𝜎log𝐿obs
. In this first released version, we follow the IDL code used in

Pascucci et al. (2016), where we assume log-uniform priors for 𝑇 and 𝐿 in this likelihood
function. This is because both initial mass function of stars and their evolutionary timescales
imply that the occurrence of stars decreases as a function of 𝑇eff and 𝐿bol. Different likelihood
function with different priors can be added in the future versions.

We choose 𝑇eff and 𝐿bol to estimate the stellar age and mass because extinction is significant
for young stars, especially when embedded in the natal cloud. Although the 𝑇eff and 𝐿bol are
not directly observed quantities, they are the two main quantities that evolutionary models can
be compared with. When medium or high-resolution spectroscopy is employed on individual
targets, 𝑇eff and 𝐿bol can be well determined, and the best estimates for YSOs are from works
where a stellar spectrum is fitted simultaneously with extinction and accretional heating (e.g.,
Alcalá et al., 2017). To ensure the best results, we recommend using 𝑇eff and 𝐿bol (with their
uncertainties) that are derived simultaneously through spectroscopy.

Our method uses a combination of the pre-main-sequence non-magnetic evolutionary tracks from
Feiden (2016) and Baraffe et al. (2015) for hot (𝑇eff > 3, 900) and cool stars (𝑇eff ≤ 3, 900),
respectively. This aligns with the choice as initially suggested in Herczeg & Hillenbrand
(2015) and Pascucci et al. (2016), who used the combination of these tracks to derive the
stellar masses of Chamaeleon I YSOs, and has also been tested and adopted in some recent
works (e.g., Fernandes et al., 2023; Manara et al., 2023; Simon et al., 2019). ysoisochrone
also has a new algorithm to find the zero-age main sequence (ZAMS) automatically so that
post-main-sequence tracks are not included when interpolating to a finer grid of evolutionary
tracks (e.g., Fernandes et al., 2023). This algorithm also enables ysoisochrone to handle
other stellar evolutionary models that are not only focused on pre-main-sequence stars, such as
PARSEC tracks (Bressan et al., 2012). We note that there has been recent development on the
stellar evolutionary models, but some of those updated models have not yet been released to
the public. Therefore, user-developed evolutionary tracks can be also utilized in ysoisochrone

when provided in the specific format described in the code documentation. We also aim to
include those updated models once they are publicly available.

We also provide two other ways to estimate the stellar masses and ages from these isochrones.

1. In some cases, when a good measurement of the stellar luminosity is unavailable, we
provide an option to set up the assumed age and then derive the stellar mass. Some
examples when this method is useful include: targets that are very young and excep-
tionally bright; and targets with an edge-on disk so that the stellar 𝐿bol is significantly
underestimated.

2. The classical method that finds the closest point from the isochrones for each YSOs
based on their 𝑇eff and 𝐿bol. We note that this standalone function is primarily used for
verification purposes against literature (e.g., Manara et al., 2023; Pascucci et al., 2016)
as it does not provide uncertainties.
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