
antimeridian: A Python package for correcting
geometries that cross the 180th meridian
Peter Gadomski 1¶ and Preston Hartzell 2

1 Development Seed, USA 2 Element 84, Inc., USA ¶ Corresponding author
DOI: 10.21105/joss.07530

Software
• Review
• Repository
• Archive

Editor: Michael Mahoney
Reviewers:

• @ianturton
• @busstoptaktik
• @mmann1123

Submitted: 15 October 2024
Published: 08 January 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Locations on and around planet Earth are commonly represented in a geodetic coordinate
system with a longitude, a latitude, and a height. Longitude is the “horizontal” dimension
with a domain from -180° to 180°, which spans the entire 360° circumference of the planet.
Where the two domain bounds meet is known as the 180th meridian or the antimeridian.

Figure 1: Earth map centered on the Pacific ocean, with the 180th meridian highlighted.

The GeoJSON specification (Butler et al., 2016) describes how antimeridian-crossing shapes
should be split into multiple shapes at the 180th meridian. Real-world geometries often
do not comply with the specification, typically due to projected coordinates being naively
reprojected to geodetic coordinates. This leads to confusing and unrepresentable geometries.
Our antimeridan package provides Python functions for correcting improper geometries, as
well as other related utilities.

Statement of need
Because of factors such as the relative lack of populated settlements along the 180th merid-
ian and the proliferation of British maps in the late 19th century, the Prime Meridian (0°
longitude) runs through Greenwich, England (Various, 1884). Before the advent of satellite
imagery, relatively few geospatial products crossed the 180th meridian, and so the problem of
antimeridian-crossing geometries was usually avoidable. Now, satellite systems are producing
data over the entire globe at an ever-increasing scale, meaning that more and more data exist
that cross over the 180th meridian. At the same time, the combination of these products with

Gadomski, & Hartzell. (2025). antimeridian: A Python package for correcting geometries that cross the 180th meridian. Journal of Open Source
Software, 10(105), 7530. https://doi.org/10.21105/joss.07530.

1

https://orcid.org/0000-0003-4877-7217
https://orcid.org/0000-0002-8293-3706
https://doi.org/10.21105/joss.07530
https://github.com/openjournals/joss-reviews/issues/7530
https://github.com/gadomski/antimeridian
https://doi.org/10.5281/zenodo.14335985
https://www.mm218.dev/
https://orcid.org/0000-0003-2402-304X
https://github.com/ianturton
https://github.com/busstoptaktik
https://github.com/mmann1123
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07530


interactive online maps has made the antimeridian appear on almost anyone’s tablet, web portal,
or mapping app. There is a a need to create and correct antimeridian-crossing geometries
at scale, e.g. for large SpatioTemporal Asset Catalog (STAC) (STAC Contributors, 2024)
catalogs that are used to search and discover petabytes of geospatial data. When creating
these catalogs, improper antimeridian-crossing geometries need to be corrected before ingesting
to a data store to ensure that queries do not break and visualizations do not incorrectly span
the entire globe, often with chaotic representations. This is the problem for which antimeridian
was designed.

To the best of our knowledge, the algorithm underlying antimeridian is a novel one. Briefly, it
breaks each polygon into segments and finds where a segment might cross the antimeridian.
It splits that segment at the crossing point and closes each half of the segment along the
antimeridian. This results in a multi polygon split on the antimeridian, as the GeoJSON
specification requires.

Figure 2: A complex shape that has not been split on the antimeridian and incorrectly spans the globe

Figure 3: A complex shape correctly split at the antimeridian

Our algorithm has some limitations. While it can handle simple geometries that enclose the

Gadomski, & Hartzell. (2025). antimeridian: A Python package for correcting geometries that cross the 180th meridian. Journal of Open Source
Software, 10(105), 7530. https://doi.org/10.21105/joss.07530.

2

https://antimeridian.readthedocs.io/en/stable/the-algorithm.html
https://doi.org/10.21105/joss.07530


north or south pole, complex geometries can cause failures. Another failure mode occurs when
geometries contain segments that span more than half of the globe.

In addition to correcting GeoJSON geometries that cross the antimeridian, our library includes
utilities for calculating the centroid of an antimeridian-crossing geometry and generating valid
GeoJSON antimeridian-crossing bounding boxes.

Key references
• The antimeridian package relies on Shapely (Gillies et al., 2024) for geometry validation,

conversions, and other operations.
• We use Cartopy (Met Office, 2010 - 2015) to generate visualizations for our documenta-

tion.
• This library has been ported to Go by another developer at go-geospatial/antimeridian.
• GDAL (Rouault et al., 2024) can wrap shapes at the dateline (-wrapdateline) and can

produce similar outputs to antimeridian if tuned with the -datelineoffset flag. We
created a notebook to compare the two, and found the following:

– In general, antimeridian and ogr2ogr perform the same, provided ogr2ogr is
correctly tuned with the -datelineoffset flag.

– antimeridian outputs the same geometry type as the input, whereas ogr2ogr

outputs a FeatureCollection.
– antimeridian has functionality to handle the poles.

Acknowledgements
We acknowledge Rob Emanuele, Tom Augspurger, and Matt McFarland for the technical and
financial support they provided us through the Planetary Computer program at Microsoft. We
also acknowledge our employers, Development Seed and Element 84, who support open source
software through direct funding and developer contribution time.

Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., & Schaub, T. (2016). RFC 7946: The
GeoJSON Format. RFC Editor.

Gillies, S., Wel, C. van der, Van den Bossche, J., Taves, M. W., Arnott, J., Ward, B. C., &
others. (2024). Shapely (Version 2.0.6). https://doi.org/10.5281/zenodo.5597138

Met Office. (2010 - 2015). Cartopy: a cartographic python library with a Matplotlib interface.
https://scitools.org.uk/cartopy

Rouault, E., Warmerdam, F., Schwehr, K., Kiselev, A., Butler, H., Łoskot, M., Szekeres, T.,
Tourigny, E., Landa, M., Miara, I., Elliston, B., Chaitanya, K., Plesea, L., Morissette, D.,
Jolma, A., Dawson, N., Baston, D., Stigter, C. de, & Miura, H. (2024). GDAL (Version
3.8.3). https://doi.org/10.5281/zenodo.5884351

STAC Contributors. (2024). SpatioTemporal Asset Catalog (STAC) specification. https:
//stacspec.org

Various. (1884). International Conference Held at Washington for the Purpose of Fixing
a Prime Meridian and a Universal Day. October, 1884. Protocols of the Proceedings.
https://www.gutenberg.org/files/17759/17759-h/17759-h.htm

Gadomski, & Hartzell. (2025). antimeridian: A Python package for correcting geometries that cross the 180th meridian. Journal of Open Source
Software, 10(105), 7530. https://doi.org/10.21105/joss.07530.

3

https://antimeridian.readthedocs.io/en/stable/failure-modes.html
https://pkg.go.dev/github.com/go-geospatial/antimeridian
https://gdal.org/en/latest/programs/ogr2ogr.html#cmdoption-ogr2ogr-wrapdateline
https://www.gadom.ski/antimeridian/v0.3.11/comparison/
https://doi.org/10.5281/zenodo.5597138
https://scitools.org.uk/cartopy
https://doi.org/10.5281/zenodo.5884351
https://stacspec.org
https://stacspec.org
https://www.gutenberg.org/files/17759/17759-h/17759-h.htm
https://doi.org/10.21105/joss.07530

	Summary
	Statement of need
	Key references
	Acknowledgements

