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Summary
The tool cd2es converts climate projections from CORDEX (WCRP, 2024) to energy system
model input data. The tool is written in Python and uses snakemake for workflow management.
cd2es can calculate the impact of climate change on input data time series for energy system
models (e.g. capacity factors). In contrast to existing tools, cd2es can use a variety of different
climate models instead of historic weather data. cd2es can automatically download CORDEX
model outputs. Optionally, a bias-adaption with ERA5-reanalysis data can be performed.
The outputs are time series for renewable capacity factors, demand and the availability of
thermal power plants aggregated to user specific geometries with an hourly resolution for easy
implementation into different energy system models.

Statement of need
Global Circulation Models (GCMs) modelling the properties of the atmosphere and oceans
project future climate developments (Jacob et al., 2014). Those GCMs project a significant
change in climate variables such as temperature and precipitation under climate change (Dosio
& Fischer, 2018). As many components of the energy system depend on climate variables,
climate change should be considered when planning future energy systems. It is therefore
important to convert climate projections into input data for energy system models, which are
commonly used for energy systems planning (DeCarolis et al., 2017; Plaga & Bertsch, 2023).

There is only a limited number of tools available which convert climate variables into energy
system model inputs. renewables.ninja calculates solar and wind capacity factors from historical
reanalysis data (Pfenninger & Staffell, 2016; Staffell & Pfenninger, 2016), but there is no
open-source code available for the conversion, furthermore, the tool is limited to solar and wind
capacity factors and historic data. The Python library pvlib (Anderson et al., 2023) allows for
a detailed calculation of solar capacity factors, yet is limited to historic data and solar capacity
factors. Pypsa/atlite (Hofmann et al., 2021) converts historic reanalysis data to energy system
input data. Yet, it cannot account for climate projections and does not calculate climate
influences on thermal power plants. Formayer et al. (2023) provide a data set for temperature,
radiation, wind power and hydro power based on future climate projections. However, they
only provide results for one climate model and the continent Europe and no ready to use
code to enlarge the findings to other climate models or other continents. In summary, there is
a lack of open source tools to include climate projections into energy system planning in a
comprehensive matter.

cd2es provides a tool for automatically downloading climate projections and the converting
them to energy system input data. It supports the calculation of wind and solar photovoltaic
capacity factors, concentrated solar power, availability of thermal power plants, hydro power
and electricity demand based on CORDEX climate data (WCRP, 2024). The tool can process a
variety of different climate models hosted on CORDEX for a wide geographical scope. It allows
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for an optional bias correction of the climate data based on ERA5-reanalysis data (Muñoz
Sabater, 2019). The output of cd2es are csv files with time series in hourly resolution for
a user-chosen geography. Therefore, they can be easily included in different energy system
optimization models. The cd2es tool was used in Plaga & Bertsch (2022) and is currently in
use in two research projects, StEAM and REWARDS (Härtel, 2024). cd2es is aimed at energy
system modelers who want to include climate data into their energy system models.

Software dependencies
The software is written in Python and uses the workflow management tool snakemake (Mölder
et al., 2021). For processing climate data, the open-source tool cdo (Schulzweida, 2020) is
used. On Windows, the open-source tool wsl is necessary to run cdo on Windows (microsoft,
2024).

Methods for converting climate variables to energy system input
data
Most conversion methods are based on Plaga & Bertsch (2023) and described in detail in the
documentation of the tool cd2es. However, we will also include a short overview here.

Bias adaption
The climate data is bias adapted using a quantile delta mapping approach (Cannon et al.,
2015).

Wind power
The wind speed 𝑣 is first interpolated from the height reported in the data to turbine height.
Then capacity factor 𝑐𝑓wind, single(𝑣) can be derived via a standardized production curve:

𝑐𝑓wind, single(𝑣) =

⎧{{
⎨{{⎩

0, 𝑣 < 𝑣in,
𝑣3−𝑣3in
𝑣3r −𝑣3in

, 𝑣in ≤ 𝑣 < 𝑣r,
1, 𝑣r ≤ 𝑣 < 𝑣out,
0, 𝑣 ≥ 𝑣out,

with cut-in velocity 𝑣in, rated velocity 𝑣r and cut-out velocity 𝑣out (van der Wiel et al., 2019).
We smooth the production curve with a gaussian filter to account for multiple turbines (Staffell
& Pfenninger, 2016).

Solar photovoltaics
Photovoltaic cells are influenced by climate variables in two ways: the solar irradiance influences
the available incoming energy, while the temperature influences the cell’s efficiency. The cd2es
tools supports three different models for calculating photovoltaic time series, see Jerez et al.
(2015).

Availability of thermal power plants
As thermal power plants need cooling, their availability decreases with rising temperatures.
cd2es distinguishes between once-through cooled plants and closed-loop cooled plants. For
once-through plants, not only the temperature but also available water is considered. The
availability of the plants follows piecewise linear equations, which were implemented as described
in Abdin et al. (2019).
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Hydropower
To calculate hydro power output, historic runoff at the hydro power plants’ locations are
evaluated. It is assumed, that power plants reach their installed capacity 𝑃0 at the average
historic runoff 𝑄̄hist at their location (optionally multiplied by factor 𝑎). Then, future hydro
power of one power plant 𝑃(𝑡) can be calculated with

𝑃(𝑡) = 𝑄(𝑡) ⋅ 𝑃0
𝑎 ⋅ 𝑄̄hist

using the linear relation between runoff and hydro power production and the future runoff
𝑄(𝑡) (Schlott et al., 2018).

Demand
To calculate future demand, a quadratic regression is performed between historic temperatures
and historic demand data as in Zhang & Ayyub (2020). The parameters derived here are then
used to scale future demand time series.
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