
fortran-src: Fortran static analysis infrastructure
Mistral Contrastin 1,2, Raoul Hidalgo Charman 3, Matthew Danish 4,
Benjamin Orchard 5, Dominic Orchard 5,6, Andrew Rice 1, and Jason
Xu 3

1 Department of Computer Science and Technology, University of Cambridge, UK 2 Meta, London, UK
3 Bloomberg, US 4 Utrecht University, Netherlands 5 School of Computing, University of Kent, UK 6
Institute of Computing for Climate Science, University of Cambridge, UK

DOI: 10.21105/joss.07571

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @fzhao70
• @filippi
• @tclune

Submitted: 26 September 2024
Published: 07 February 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
fortran-src is an open-source Haskell library and command-line application for the lexing,
parsing, and static analysis of Fortran source code. It provides an interface to build other
tools, e.g., for static analysis, automated refactoring, verification, and compilation. The library
supports FORTRAN 66, FORTRAN 77, Fortran 90, Fortran 95, some legacy extensions, and
partially Fortran 2003. The library has been deployed in several language tool projects in
academia and industry.

Statement of need
As one of the oldest surviving programming languages (Backus, 1978), Fortran underpins a vast
amount of software; Fortran is not only a mainstay of legacy software, but is also used to write
new software. Fortran remains a popular language in the international scientific community;
Vanderbauwhede (2022) reports data from 2016 on the UK’s Archer supercomputer, showing
the vast majority of use being Fortran code. Fortran is particularly notable for its prevalence in
earth sciences, e.g., for implementing climate models that inform international policy decisions
(Méndez et al., 2014). In 2024, Fortran re-entered the Top 10 programming languages in the
TIOBE Index, showing its enduring popularity. The continued use of Fortran, particularly in
scientific contexts, was the catalyst for this software package.

A challenge in writing language tools for Fortran is its long history. There have been several
major language standards (FORTRAN I-IV, FORTRAN 66 and 77, Fortran 90, 95, 2003, 2008,
etc.) Newer standards often deprecate features that are known to be a ready source of errors,
or difficult to specify or understand. However, compilers often support an amalgam of features
across standards (Urma et al., 2014), enabling developers to keep using deprecated features
and mix language standards. This complicates the development of new tools for manipulating
Fortran source code; one must tame the weight of decades of language evolution.

Our package, fortran-src, provides an open-source unified core for statically analysing Fortran
code across language standards, with a focus on legacy code over cutting-edge modern Fortran.
It is both a standalone tool and a library, providing a suite of standard static analyses as a
basis for further programming language tools and systems.

Related software
A variety of other tools exist for analysing Fortran, but most are commercial and closed
source, e.g., plusFORT1 (which includes the SPAG refactoring tool), the SimCon fpt tool2

1https://polyhedron.com/?product=plusfort
2http://simconglobal.com/fpt_summary.html

Contrastin et al. (2025). fortran-src: Fortran static analysis infrastructure. Journal of Open Source Software, 10(106), 7571. https://doi.org/10.
21105/joss.07571.

1

https://orcid.org/0000-0002-5409-7122
https://orcid.org/0000-0002-8401-7672
https://orcid.org/0000-0002-7186-387X
https://orcid.org/0000-0002-7543-7675
https://orcid.org/0000-0002-7058-7842
https://orcid.org/0000-0002-4677-8032
https://orcid.org/0000-0003-3310-0756
https://doi.org/10.21105/joss.07571
https://github.com/openjournals/joss-reviews/issues/7571
https://github.com/camfort/fortran-src/
https://doi.org/10.5281/zenodo.14831853
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/fzhao70
https://github.com/filippi
https://github.com/tclune
https://creativecommons.org/licenses/by/4.0/
https://www.tiobe.com/tiobe-index/
https://polyhedron.com/?product=plusfort
http://simconglobal.com/fpt_summary.html
https://doi.org/10.21105/joss.07571
https://doi.org/10.21105/joss.07571


(which includes further verification features like dimensional analysis), and Forcheck3. General
commercial static analysis tools, like Coverity4 and Understand5, can also handle Fortran.
Photran6 is an open-source plugin for refactoring in Eclipse, but does not provide more general
static analysis facilities. More recent work has developed open-source tools for refactoring
Fortran (Vanderbauwhede, 2022): RefactorF4Acc7 is an open-source tool for upgrading
FORTRAN 77 code to Fortran 95.

No comprehensive lexing, parsing, and analysis library was available from which to build new
tools.

Functionality in brief
• Lexing (of both fixed and free form code) and parsing of Fortran to an expressive unified

Abstract Syntax Tree;
• Static analyses, e.g., general data flow analysis including:

– Reaching definitions;
– Def-use/use-def;
– Constant evaluation;
– Constant propagation;
– Live variable analysis;
– Induction variable analysis.

• Type checking;
• Module graph analysis;
• Pretty printing;
• “Reprinting” (patching sections of source code without removing secondary notation

such as comments);
• Exporting to JSON.

fortran-src is primarily a Haskell library but it also packages a command-line tool. By exporting
parsed code to JSON, the parsing and analyses that fortran-src provides may be utilized by
non-Haskell tools.

Functionality and example usage of the tool and library is described in detail on the fortran-src
wiki. A demonstration of fortran-src for static analysis is provided by a small demo tool which
detects if an allocatable array is used before it has been allocated.8

Work building on fortran-src

CamFort
The fortran-src package originated in the CamFort project9 whose aim was to (1) develop
practical tools for scientists to help reduce the accidental complexity of models through evolving
a code base, and (2) provide tools for automatically verifying properties of code. The work
resulted in the CamFort tool, of which fortran-src is the core infrastructure.

CamFort provides automatic refactoring of deprecated or error-prone programming patterns,
with the goal of helping to meet core quality requirements, such as maintainability (D. Orchard

3https://codework.com/solutions/developer-tools/forcheck-fortran-analysis/
4https://www.synopsys.com/software-integrity/static-analysis-tools-sast/coverity.html
5https://scitools.com/
6https://projects.eclipse.org/projects/tools.ptp.photran
7https://github.com/wimvanderbauwhede/RefactorF4Acc
8https://github.com/camfort/allocate-analysis-example
9Funded from 2015-18 by the EPSRC under the project title CamFort: Automated evolution and verification of

computational science models https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/M026124/1

Contrastin et al. (2025). fortran-src: Fortran static analysis infrastructure. Journal of Open Source Software, 10(106), 7571. https://doi.org/10.
21105/joss.07571.

2

https://github.com/wimvanderbauwhede/RefactorF4Acc
https://github.com/camfort/fortran-src/wiki/
https://github.com/camfort/fortran-src/wiki/
https://codework.com/solutions/developer-tools/forcheck-fortran-analysis/
https://www.synopsys.com/software-integrity/static-analysis-tools-sast/coverity.html
https://scitools.com/
https://projects.eclipse.org/projects/tools.ptp.photran
https://github.com/wimvanderbauwhede/RefactorF4Acc
https://github.com/camfort/allocate-analysis-example
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/M026124/1
https://doi.org/10.21105/joss.07571
https://doi.org/10.21105/joss.07571


& Rice, 2013). It can rewrite EQUIVALENCE and COMMON blocks (both of which were
deprecated in the Fortran 90 standard) into more modern style.

CamFort also provides code analysis and lightweight verification tools (Contrastin et al., 2016).
Source-code annotations (comments) provide specifications of certain aspects of a program’s
meaning or behaviour. CamFort can check that code conforms to these specifications (and for
some features can suggest places to insert specifications or infer specifications from existing
code). Facilities include: units-of-measure typing (Danish et al., 2024; D. Orchard et al.,
2020; D. A. Orchard et al., 2015), array access patterns (for capturing the shape of stencil
computations) (D. A. Orchard et al., 2017), deductive reasoning via pre- and post-conditions
in Hoare logic style, and various code safety checks.

CamFort has been previously deployed at the Met Office, with its analysis tooling run on the
Unified Model (Walters et al., 2017) to ensure internal code quality standards are met.

fortran-vars memory model library
fortran-vars is a static analysis library built on top of fortran-src. Many static analysis
questions depend on knowing the value and type of expressions. fortran-vars provides an
API to answer this question. It has modules for symbol table construction, constant expression
evaluation, and type checking. Additionally, fortran-vars provides a memory model to resolve
aliases introduced by equivalence statements, which are very common in legacy Fortran 77
code. It is possible to construct such a memory model because variables in Fortran 77 are
statically allocated by default. Data flow analysis, such as constant propagation analysis, can
be conducted based on memory locations instead of variable names.

Nonstandard INTEGER refactoring
fortran-src has been used to build refactoring tools to help migration and improve the quality
of large legacy codebases. One example is an effort to fix issues around the use of integers
where logical types are expected. This tool uses the typechecker to find integer expressions
which are then normalised while flagging anything potentially changing behaviour for further
manual inspection. These might be situations in which some code is hard to statically analyse
but safe, or it may have uncovered an existing bug. The tool uncovered many such bugs in a
particular codebase during this effort, including several in the form of the snippet above.

This effort, along with a number of others, allowed the team working at Bloomberg (a subset
of the authors here) to eventually migrate a codebase from a legacy compiler to a modified
GFortran, with no change in behaviour.

Project maintenance and documentation
fortran-src may be built and used on Windows, Mac, and Linux systems using a recent version
of the Glasgow Haskell Compiler. The project includes an expansive test suite covering various
parsing edge cases and behaviours, which is automatically executed for changes to the project
(on the above three systems). Bug reports and other contributions are welcomed at the
fortran-src GitHub page.

Acknowledgements
The initial work on the fortran-src infrastructure was funded by an EPSRC grant CamFort:
Automated evolution and verification of computational science models (EP/M026124/1),
from 2015-18, and by an EPSRC Impact Acceleration Award and then Knowledge Transfer
Partnership grant from 2018-19. Orchard is also supported by the generosity of Eric and Wendy
Schmidt by recommendation of the Schmidt Sciences program, through which he carries on

Contrastin et al. (2025). fortran-src: Fortran static analysis infrastructure. Journal of Open Source Software, 10(106), 7571. https://doi.org/10.
21105/joss.07571.

3

https://www.haskell.org/ghc/
https://github.com/camfort/fortran-src
https://doi.org/10.21105/joss.07571
https://doi.org/10.21105/joss.07571


his work supporting scientists through programming languages, tools, and systems as part of
the Institute of Computing for Climate Science at the University of Cambridge. Furthermore,
this work was supported by a grant from Bloomberg.

A number of other people have been associated with the project and have contributed to the
development of the package over the years (in alphabetical order of surname):

• Daniel Beer
• Anthony Burzillo
• Harry Clarke
• Aiden Jeffrey
• Lukasz Kolodziejczyk
• Vilem-Benjamin Liepelt
• Darius Makovsky
• Benjamin Moon
• Daniel Ruoso
• Eric Seidel
• Poppy Singleton-Hoare
• Jay Torry

References
Backus, J. (1978). The history of FORTRAN I, II, and III. SIGPLAN Not., 13(8), 165–180.

https://doi.org/10.1145/960118.808380

Contrastin, M., Danish, M., Orchard, D., & Rice, A. (2016). Lightning talk: Supporting
software sustainability with lightweight specifications. Proceedings of the Fourth Workshop
on Sustainable Software for Science: Practice and Experiences (WSSSPE4), University of
Manchester, Manchester, UK, September 12-14, 1686.

Danish, M., Orchard, D., & Rice, A. (2024). Incremental units-of-measure verification. In
CoRR (Vol. abs/2406.02174). https://doi.org/10.48550/ARXIV.2406.02174

Méndez, M., Tinetti, F. G., & Overbey, J. L. (2014). Climate models: Challenges for Fortran
development tools. 2014 Second International Workshop on Software Engineering for
High Performance Computing in Computational Science and Engineering, 6–12. https:
//doi.org/10.1109/SE-HPCCSE.2014.7

Orchard, D. A., Contrastin, M., Danish, M., & Rice, A. C. (2017). Verifying spatial properties
of array computations. Proc. ACM Program. Lang., 1(OOPSLA), 75:1–75:30. https:
//doi.org/10.1145/3133899

Orchard, D. A., Rice, A. C., & Oshmyan, O. (2015). Evolving Fortran types with inferred units-
of-measure. J. Comput. Science, 9, 156–162. https://doi.org/10.1016/j.jocs.2015.04.018

Orchard, D., Contrastin, M., Danish, M., & Rice, A. (2020). Guiding user annotations for
units-of-measure verification. CoRR, abs/2011.06094. https://arxiv.org/abs/2011.06094

Orchard, D., & Rice, A. (2013). Upgrading Fortran source code using automatic refactoring.
Proceedings of the 2013 ACM Workshop on Refactoring Tools, WRT@SPLASH 2013,
Indianapolis, IN, USA, October 27, 2013, 29–32. https://doi.org/10.1145/2541348.
2541356

Urma, R.-G., Orchard, D., & Mycroft, A. (2014). Programming language evolution workshop
report. Proceedings of the 1st Workshop on Programming Language Evolution, 1–3.
https://doi.org/10.1145/2717124.2717125

Vanderbauwhede, W. (2022). Making legacy Fortran code type safe through automated
program transformation. The Journal of Supercomputing, 78(2), 2988–3028. https:
//doi.org/10.1007/S11227-021-03839-9

Contrastin et al. (2025). fortran-src: Fortran static analysis infrastructure. Journal of Open Source Software, 10(106), 7571. https://doi.org/10.
21105/joss.07571.

4

https://doi.org/10.1145/960118.808380
https://doi.org/10.48550/ARXIV.2406.02174
https://doi.org/10.1109/SE-HPCCSE.2014.7
https://doi.org/10.1109/SE-HPCCSE.2014.7
https://doi.org/10.1145/3133899
https://doi.org/10.1145/3133899
https://doi.org/10.1016/j.jocs.2015.04.018
https://arxiv.org/abs/2011.06094
https://doi.org/10.1145/2541348.2541356
https://doi.org/10.1145/2541348.2541356
https://doi.org/10.1145/2717124.2717125
https://doi.org/10.1007/S11227-021-03839-9
https://doi.org/10.1007/S11227-021-03839-9
https://doi.org/10.21105/joss.07571
https://doi.org/10.21105/joss.07571


Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams,
K., Wood, N., Allen, T., & others. (2017). The Met Office unified model global atmosphere
6.0/6.1 and JULES global land 6.0/6.1 configurations. Geoscientific Model Development,
10(4), 1487–1520. https://doi.org/10.5194/gmd-10-1487-2017

Contrastin et al. (2025). fortran-src: Fortran static analysis infrastructure. Journal of Open Source Software, 10(106), 7571. https://doi.org/10.
21105/joss.07571.

5

https://doi.org/10.5194/gmd-10-1487-2017
https://doi.org/10.21105/joss.07571
https://doi.org/10.21105/joss.07571

	Summary
	Statement of need
	Related software

	Functionality in brief
	Work building on fortran-src
	CamFort
	fortran-vars memory model library
	Nonstandard INTEGER refactoring

	Project maintenance and documentation
	Acknowledgements
	References

