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Statement of need
Atomistic spin texture simulations are crucial for understanding and predicting the behaviour
of magnetic materials at the nanoscale. These simulations provide insights into fundamental
phenomena like magnetic phase transition and are thus useful for exploring novel materials
(Kabiraj & Mahapatra, 2023). The Metropolis (Metropolis et al., 1953) Monte Carlo (MC)
method is frequently utilised for atomistic spin texture simulations as a sampling algorithm to
investigate the phase space of a system and is especially effective for calculating equilibrium
properties. Efficient parallelisation of Metropolis MC simulation is challenging since the
evolving states are typically not independent because of the Markov property. Here we focus
on simulating magnetic phase transitions under the anisotropic Heisenberg Model (Heisenberg,
1928) in a very high dimensional space, which is important for emerging two-dimensional (2D)
magnetism and nontrivial topological spin textures (Augustin et al., 2021). Previous attempts
for parallelisation are restricted to the simpler Ising Model and not applicable to 2D materials
because of their finite magnetocrystalline anisotropy, complex crystal structures and long-range
interactions. MC simulation of the anisotropic Heisenberg model is very complicated owing to
the large number of additional Hamiltonian calculations and interconnectivity between lattice
points. The calculation scales with 𝑁2, where 𝑁 represents the dimension of a square lattice.
This becomes alarming when 𝑁 exceeds 100, which is a realistic estimate for investigating
topological spin textures (skyrmions, merons, etc). Existing open-source software for atomistic
spin texture simulations such as SPIRIT (Müller et al., 2019) or VAMPIRE (Evans et al., 2014)
are based on the single spin update method. While this ensures a detailed balance condition,
it is very inefficient for finding the ground state for ultra large supercells.

Here we present CUDA-METRO, a graphical processing unit (GPU) based open-source code
for accelerated atomistic spin dynamics simulation. This is based on our new algorithm which
simultaneously updates multiple spins irrespective of their mutual correlation and harnesses
the extreme SIMD (Single Instruction Multiple Device) potential of the GPU to access the
ground state of ultra large supercells in a reasonable timescale. We evaluated our code by
precisely simulating complex topological spin textures and temperature-dependent magnetic
phase transitions for diverse 2D crystal structures with long-range magnetic interactions. We
demonstrate exceptional acceleration while finding the ground state of a 750 × 750 supercell
from an initial random spin configuration in 9 hours using an A100-SXM4 GPU.

Summary
We consider a 2D lattice system with a periodic arrangement of atoms, where each atom is
represented by a 3D spin vector. This atomistic spin model is based on the spin Hamiltonian,
which delineates the essential spin-dependent interactions at the atomic scale, excluding the
influences of potential, kinetic energy and electron correlations. The spin Hamiltonian of the
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𝑖th atom is conventionally articulated as
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Where 𝐽 is the isotropic exchange parameter, the 𝐾s are the anisotropic exchange parameters,
with the superscript denoting the spin direction, 𝐴 is the single ion exchange parameter, 𝜆 is
the biquadratic parameter, 𝐷 is the Dyzaloshinskii-Moriya Interaction (DMI) parameter. 𝜇 is
the dipole moment of a single atom and 𝐵 is the external magnetic field. 𝑠𝑖, 𝑠𝑗 are individual
atomic spin vectors. {𝑠𝑗} are the first set of neighbours, {𝑠𝑘} are the second set of neighbours
and so on. The subscripts below all 𝐽s and 𝐾s denote the neighbour set, 𝐽1 denotes the first
neighbours, 𝐽2 the second and so on. In our code, we have limited the number of neighbour
sets to be 4 since it is expected for 2D materials that the interaction energy dies down beyond
that. All these above parameters except 𝐵 are material specific parameters that are the inputs
to our MC code.

Starting from a random spin configuration, our objective is to find the orientation of spin
vectors for every atom for the ground state of the lattice system for a given magnetic field and
temperature. Traditionally, single spin update (SSU) scheme is employed to solve this problem,
which satisfies a detailed balance condition. In the SSU method of updating the state, a single
atomic spin is chosen at random and changed, while noting down the energy shift. This new
state is then accepted or rejected using the Metropolis criteria as shown in Algorithm 1, where
𝛽 = (𝑘B𝑇 )−1, 𝑘B being the Boltzmann constant and 𝑇 being the temperature. It is clear that
SSU becomes extremely inefficient as the dimensionality increases.

Algorithm 1 Metropolis Selection
1: procedure M(𝐻𝑓,𝐻𝑖)
2: if Δ𝐻 < 0 then
3: Return 1 (ACCEPT)

4: else if 𝑒𝛽Δ𝐻 < 𝑅 then ▷ 𝑅 is uniformly random
5: Return 1 (ACCEPT)

6: else
7: Return 0 (REJECT)

where Δ𝐻 = 𝐻𝑓 −𝐻𝑖 is the energy difference between the final and initial state.

In our method, as depicted in Algorithm 2, we select multiple atomic spins at the same time
and change them all at once, treating them as independent events. For any individual spin,
they do not feel the effects of the other changed spins. In each of these points, we use
the Metropolis criteria to accept or reject the changed spin vectors. This becomes our new
state. Here 𝑃 denotes the number of lattice points we are evaluating at the same time for
any given state, while Γ is the batch size. Tuning Γ ensures that we can fill up our VRAM
with pre-generated random numbers instead of generating 4 × 𝑃 numbers per step. These 4
random number arrays are further divided into an array depicting the site location 𝑛, the angle
coordinates for a new random spin vector 𝜃 and 𝜙, and a conditional uniform random number
𝑟, which is used to evaluate the Metropolis criteria.

At present, five different lattice types (square, rectangular, centred-rectangular, hexagonal and
honeycomb) are implemented in our code since most of the 2D magnetic materials fall into
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Algorithm 2 Parallel Monte Carlo
1: procedure STEP(Run)
2: Read Initial state
3: Create 4 𝑃 × Γ length uniform random arrays
4: Process the 4 uniform random number arrays
5: for 𝑖 < Γ do
6: Slice the 4 arrays into subarrays with range [𝑃 × 𝑖 ∶ 𝑃 × (𝑖 + 1) − 1]
7: Execute P parallel BLOCKS with these subarrays
8: for each BLOCK do
9: Evaluate 𝐻 before (𝑇 0) and after (𝑇 1) spin change ▷ Multithreading

10: Wait for all BLOCKS to finish then increment 𝑖
11: Update all 𝑃 spins to next state
12: This state is now our next state

this category (Kabiraj et al., 2022), and for neighbour mapping, we use analytical relations
(Koziol, 2020).

For a lattice of size 𝑁 × 𝑁, 100% parallelisation would correspond to selecting 𝑁2 spins
at random. Since each spin selection and its consequent Metropolis criterion is evaluated
on a separate CUDA core, it becomes apparent that we would need 𝑁2 CUDA cores to
achieve this 100% parallelisation. Since the proposed algorithm may not adhere to the SSU
detailed balance conditions, it yields approximate results, and there is a trade-off between
parallelisation/acceleration and accuracy. It is found that if the parallelisation is limited to
10% of the lattice size, we obtain very accurate results with significant acceleration.

Unlike the SSU scheme, we do not extract simulation data after every 𝑁2 spin change, rather
we let it run till all the CUDA cores have synchronise and arrived at the next block check,
which defines our step. To directly compare, if the SSU has 1 spin changed between each
step, our algorithm will have 𝑃 amount of spins changed per iteration, where 𝑃 is also the
number of CUDA cores used or parallelisation used. In the conventional SSU, data is extracted
at every 𝑁2 (a full sweep) steps, compared to which, we would take 𝑁2

𝑃 steps to reach the
same data point.

We validate our algorithm by accurately reproducing temperature-dependent magnetic phase
transitions and intricate topological spin textures already reported in the literature, either by
SSU based Monte Carlo or by Landau Lifshitz Gilbert (LLG) (Gilbert, 2004) spin dynamics, for
diverse crystal structures.

In their seminal work, Mermin and Wagner (Mermin & Wagner, 1966) used the isotropic
Heisenberg model to analytically demonstrate that long-range order could not exist in materials
with less than three dimensions. Nonetheless, in 2017 two independent research groups
experimentally proved the existence of long-range ferromagnetism at low finite temperatures in
two distinct 2D crystals: CrI3 (Huang et al., 2017) and Cr2Ge2Te6 (Gong et al., 2017). A new
frontier in nanotechnology has eventually emerged, since multiple other research groups have
shown that 2D magnetism can exist in various materials, even at room temperature. Finite-size
effects and magneto-crystalline anisotropy, which Mermin and Wagner did not consider, are
thought to be connected to the formation of 2D magnetism. To accurately simulate the
magnetic states of two-dimensional materials, the Heisenberg model must be augmented with
necessary anisotropic terms. Using CUDA-METRO, we first simulate the magnetic phase
transition of CrI3 from ferromagnetic to paramagnetic with increasing temperature. In Fig 1,
we reproduce the magnetic phase transition from Kartsev et al. (2020), and show the effect of
parallelisation with respect to the reference data. As mentioned before, we can obtain very
accurate results with respect to SSU methods by limiting the parallelisation at 10% or below
of 𝑁2. The temperature of the ferromagnetic to paramagnetic transition point is known as
critical temperature (or the Curie point) and is extracted from the peak of the susceptibility
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versus temperature plot.

Next, we demonstrate the nucleation of topological spin textures which is an emergent
phenomenon in condensed matter physics and is gaining importance in information technology
(Bessarab et al., 2018; Luo & You, 2021). While MC simulations of medium-sized supercells
(64×64) yield quite accurate results for critical temperature calculation, observing topological
spin textures, one needs much larger supercells.

Results
In these examples, we always initialise the lattice with random spin configurations. First,
we simulate skyrmions in MnBr2 (Cui et al., 2022) as shown in Fig 2. MnBr2 is a square
lattice and for this simulation, we have considered up to the second nearest neighbour. This
material exhibits anisotropic DMI with an antiferromagnetic ground state. An antiferromagnetic
skyrmion spin texture is accurately reproduced in our simulation, which is technologically
significant due to the absence of a skyrmion Hall effect in such systems. We further study
the material CrInSe3 (Du et al., 2022) which has a hexagonal lattice. This simulation was
conducted considering only the nearest neighbours and the formation of skyrmions is shown in
Fig 2. Once again our results are in agreement with the original report. All these simulations
were conducted in a 200×200 (49×49nm2) supercell and took 30s to stabilise these topological
spin textures at a parallelisation of 20% conducted on a V100-SXM2 processor.

In Fig 3 we demonstrate the skyrmion nucleation process for the material MnSTe (Liang et al.,
2020), which has a hexagonal lattice. While we first observe several skyrmions, with evolving
MCS, they disappear and the whole lattice eventually becomes uniformly ferromagnetic, which
happens to be the direction of the applied magnetic field. This has not been reported in
the original literature (Liang et al., 2020), possibly because of the high computational time
required for a traditional SSU scheme.

In the main page [https://github.com/arkavo/CUDA-METRO/blob/main/figures/Fig-
ure_5.PNG], we further show a similar life cycle evolution for a giant skyrmion of diameter
21nm hosted in the material VZr3C3II (Kabiraj & Mahapatra, 2023). To host such a large
skyrmion, the simulation was conducted in a supercell of size 750 × 750 and the ground state
was achieved in 9 hours using an A100-SXM4 GPU.

Fig 1: Discrepancy between simulation and reference (Kartsev et al., 2020) results at differing
levels of parallelisation. At 10%, the simulation results are almost indistinguishable from the
reference data.
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Fig 2: Presence of skyrmions in MnBr2 and CrInSe3. The material parameters are taken from
Cui et al. (2022) and Du et al. (2022) respectively. The color bar represents normalised spin
vectors in the 𝑧 direction. Note that the spins of MnBr2 appear purple because there are
“red-blue” spin pairs for the vast majority.

Fig 3: Lifetime of a skyrmion in MnSTe from its creation to annihilation. The graph denotes
the average energy per atom. As we approach the global minima, the entire field becomes
aligned to the magnetic field as expected. Total time: 30𝑠.
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