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Summary
Hydromagnetic modes in spherical domains are relevant to the liquid cores of planets, moons
or stars, as well as rotating fluid dynamics experiments. These modes are solutions to the
linearized rotating magnetohydrodynamic equations that govern electrically conducting fluids
under rapid rotation. Limace.jl is a package written in the Julia programming language
(Bezanson et al., 2017), based on Galerkin projections of the governing equations onto trial
vectors of the velocity and magnetic field. It aims to facilitate the calculation of modes in
flexible setups with a high-level interface, whilst remaining computationally performant enough
to tackle relevant physical parameters.

Statement of need
The study of hydromagnetic modes is relevant in particular to Earth’s liquid core. Despite
having been theoretically predicted a long time ago (Braginsky, 1970; Hide, 1966; Malkus,
1967), recent advances in numerical modelling and new observational evidence in geomagnetic
data have reignited interest in these modes (Gerick et al., 2021; Gerick & Livermore, 2024;
Gillet et al., 2022; Luo et al., 2022; Luo & Jackson, 2022; Triana et al., 2022). It is therefore
relevant to the geophysical and astrophysical fluid dynamics community to have access to
a code that models these modes. The only open-source models to compute hydromagnetic
modes in relevant parameters for planetary cores is Kore (Triana et al., 2021), a spectral code
based on ultraspherical polynomials in axisymmetric setups written in Python. Although Kore
is limited to axisymmetric geometries, the implementation requires substantial work due to
the complexity of the underlying spectral equations, resulting in a substantial entry barrier
for scientists to model these modes. In addition to Kore, Limace.jl tries to lower this entry
barrier, by providing a generic open source model with a very simple high-level API and modern
online documentation with practical examples.

Despite having a high-level interface, Limace.jl can be used to solve complex and geophysically
relevant problems. A unique feature of Limace.jl is the support of complex (non-axisymmetric)
background magnetic fields and flows over which the modes evolve. The code has been
developed from the beginning to leave assumptions of symmetry up to the user. The model
code base is tested against mode solutions from the scientific literature to ensure its correctness.

Theoretical background and implementation details
In order to compute modal solutions, we consider the linearized momentum equation of the
incompressible fluid and the linearized induction equation (Gerick & Livermore, 2024; Ivers &
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Phillips, 2008)

𝜆u =− (∇ × u) × U0 − (∇ × U0) × u − 2Ω × u − 1
𝜌
∇𝑝

+ 1
𝜌𝜇0

((∇ × b) × B0 + (∇ × B0) × b) + 𝜈∇2u,

𝜆b =∇ × (U0 × b) + ∇ × (u × B0) + 𝜂∇2b.

with u the velocity perturbation, U0 the steady background velocity, b the magnetic field
perturbation, B0 the background magnetic field, Ω the rotation axis, 𝜌 the fluid density, 𝑝 the
reduced hydrodynamic pressure, 𝜇0 the magnetic permeability of free space, 𝜈 the kinematic
viscosity, 𝜂 the magnetic diffusivitiy, and 𝜆 = −𝜎 + i𝜔, with 𝜎 the damping rate and 𝜔 the
frequency of the oscillatory perturbation to the steady background.

To discretize the linearized equations, they are projected onto trial vectors (Galerkin vector
bases) u𝑖 and b𝑖 for the velocity and magnetic field, respectively. Due to the divergence free
condition on the velocity and magnetic field, i.e. the flow is incompressible and no magnetic
monopoles exist, it is convenient to decompose the fields into poloidal and toroidal components,
so that

u = ∑
𝑖

𝛼𝑖u𝑖 = ∑
𝑙,𝑚,𝑛

𝛼𝑃
𝑙𝑚𝑛P𝑙𝑚𝑛 + ∑

𝑙,𝑚,𝑛
𝛼𝑄
𝑙𝑚𝑛Q𝑙𝑚𝑛,

b = ∑
𝑖

𝛽𝑖b𝑖 = ∑
𝑙,𝑚,𝑛

𝛽𝑆
𝑙𝑚𝑛S𝑙𝑚𝑛 + ∑

𝑙,𝑚,𝑛
𝛽𝑇
𝑙𝑚𝑛T𝑙𝑚𝑛,

with 𝛼𝑖, 𝛽𝑖 ∈ ℂ. The respective poloidal P𝑙𝑚𝑛 and toroidal Q𝑙𝑚𝑛 basis vectors in spherical
coordinates (𝑟, 𝜃, 𝜙) are

P𝑙𝑚𝑛 = ∇ × ∇ × 𝑃𝑙𝑛(𝑟)𝑌𝑚
𝑙 (𝜃, 𝜙)r,

Q𝑙𝑚𝑛 = ∇ ×𝑄𝑙𝑛(𝑟)𝑌𝑚
𝑙 (𝜃, 𝜙)r,

and analogously for S𝑙𝑚𝑛 and T𝑙𝑚𝑛. Here, 𝑌𝑚
𝑙 (𝜃, 𝜙) is the (fully normalized) spherical

harmonic of degree 𝑙 and order 𝑚. The boundary conditions (or regularity condition at 𝑟 = 0)
are imposed on the scalar functions 𝑃 , 𝑆,𝑄, 𝑇. The scalar functions can be chosen to have
optimal properties, i.e. the resulting basis is orthogonal w.r.t a given inner product (Chen et
al., 2018; Gerick & Livermore, 2024; Livermore, 2010). Limace.jl provides several optimal
bases that satisfy relevant boundary conditions, such as non-penetration and no-slip for the
velocity and perfectly conducting and insulating exteriors for the magnetic field.

We need to consider all combinations of poloidal and toroidal vector combinations in the
projection of the forces. This leads to several coupling terms, especially for the Lorentz force,
advection and induction terms. The integrals of these coupling terms over the spherical
surfaces are computed through the Adam-Gaunt and Elsasser variables (James, 1973), which
are calculated from Wigner symbols (available in Julia through WignerSymbols.jl, based on
Johansson & Forssén (2016)). The remaining integration in radial direction is done using
Gauss-Legendre quadratures, available through FastGaussQuadrature.jl. The exact modelled
equations are outlined in Gerick & Livermore (2024), based on the work of Ivers & Phillips
(2008).

From the projected equations, the problem reduces to a generalized eigenproblem

𝜆Ax = Bx,

that is solved numerically. Here, the eigenvector x contains the coefficients 𝛼𝑖 (and 𝛽𝑖). The
matrix B is generally not symmetric/Hermitian, but A can be the unit matrix, symmetric
tridiagonal or symmetric, depending on the chosen bases.

For small problem sizes, the eigenproblem can be solved using dense methods, e.g. using the
standard library function LinearAlgebra.eigen. For larger problem sizes it is only feasible
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to compute a few eigensolutions of the sparse system. To this end, a shift-invert spectral
transform method is provided, based on the sparse LU factorization from UMFPACK (Davis,
2004) and the partial Schur decomposition implemented in ArnoldiMethod.jl (Stoppels &
Nyman, n.d.).

For postprocessing, Limace.jl uses a fast spherical harmonic transform implemented in the
SHTns library (Schaeffer, 2013), and available in Julia through SHTns.jl. It is used to transform
the spectral coefficients to vector fields evaluated on a spatial grid. Limace.jl does not provide
any plotting routines, but some examples are given, leaving the choice of plotting library up to
the user.
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