
FTorch: a library for coupling PyTorch models to
Fortran
Jack Atkinson 1¶, Athena Elafrou2, Elliott Kasoar 1,3, Joseph G.
Wallwork 1, Thomas Meltzer 1, Simon Clifford 1, Dominic Orchard 1,4,
and Chris Edsall 1

1 Institute of Computing for Climate Science, University of Cambridge, UK 2 NVIDIA, UK 3 Scientific
Computing Department, Science and Technology Facilities Council, UK 4 University of Kent, UK ¶
Corresponding author

DOI: 10.21105/joss.07602

Software
• Review
• Repository
• Archive

Editor: Matthew Feickert
Reviewers:

• @parikshitbajpai
• @timothyas
• @anand-me

Submitted: 06 December 2024
Published: 05 March 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
In the last decade, machine learning (ML) and deep learning (DL) techniques have revolutionised
many fields within science, industry, and beyond. Researchers across domains are increasingly
seeking to combine ML with numerical modelling to advance research. This typically brings
about the challenge of programming language interoperation. PyTorch (Paszke et al., 2019)
is a popular framework for designing and training ML/DL models whilst Fortran remains
a language of choice for many high-performance computing (HPC) scientific models. The
FTorch library provides an easy-to-use, performant, cross-platform method for coupling the
two, allowing users to call PyTorch models from Fortran.

FTorch is open-source, open-development, and well-documented with minimal dependencies. A
central tenet of its design, in contrast to other approaches, is that FTorch removes dependence
on the Python runtime (and virtual environments). By building on the LibTorch backend
(written in C++ and accessible via an API), it allows users to run ML models on both CPU
and GPU architectures without needing to port code to device-specific languages.

Statement of need
The explosion of ML/DL has brought several promising opportunities to deploy these techniques
in scientific research. There are notable applications in the physical sciences (Carleo et al.,
2019), climate science (Kashinath et al., 2021), and materials science (Bishara et al., 2023).
Common applications include the emulation of computationally intensive processes and the
development of data-driven components. Such deployments of ML can achieve improved
computational and/or predictive performance, compared to traditional numerical techniques. A
common example from the geosciences is ML parameterisation of subgrid processes—a major
source of uncertainty in many models (e.g., Bony et al. (2015), Rasp et al. (2018)).

Fortran is widely used for scientific codes due to its performance, stability, array-oriented design,
and native support for shared and distributed memory, amongst other features (Kedward
et al., 2022). Many ML frameworks, on the other hand, are accessed using Python. The
commonly-used PyTorch framework allows users to design and deploy ML models with many
advanced features.

Ideally, users would develop and validate ML models in the PyTorch environment before
deploying them into a scientific model. This deployment should require minimal additional
code, and guarantee identical results as obtained with the PyTorch interface—something not

Atkinson et al. (2025). FTorch: a library for coupling PyTorch models to Fortran. Journal of Open Source Software, 10(107), 7602. https:
//doi.org/10.21105/joss.07602.

1

https://orcid.org/0000-0001-5001-4812
https://orcid.org/0009-0005-2015-9478
https://orcid.org/0000-0002-3646-091X
https://orcid.org/0000-0003-1740-9550
https://orcid.org/0000-0001-7754-504X
https://orcid.org/0000-0002-7058-7842
https://orcid.org/0000-0001-6863-2184
https://doi.org/10.21105/joss.07602
https://github.com/openjournals/joss-reviews/issues/7602
https://github.com/Cambridge-ICCS/FTorch
https://doi.org/10.5281/zenodo.14968153
https://www.matthewfeickert.com/
https://orcid.org/0000-0003-4124-7862
https://github.com/parikshitbajpai
https://github.com/timothyas
https://github.com/anand-me
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07602
https://doi.org/10.21105/joss.07602


guaranteed if re-implementing by hand in Fortran. Ideally one would call out, from Fortran, to
an ML model saved from PyTorch, with the results returned directly to the scientific code.

FTorch bridges this gap, reducing the burden on researchers seeking to incorporate ML into
their numerical models. It provides an intuitive and user-friendly interface from Fortran to ML
models developed using PyTorch. It removes the need for detailed knowledge about language
interoperation and the need to develop bespoke coupling code, instead providing a Fortran
interface designed to be familiar to both PyTorch and Fortran users.

Having no dependence on the Python runtime, FTorch avoids the incurred overhead of object
representations in Python’s runtime and is appealing for HPC systems where the management
of Python environments can be challenging.

Software description
FTorch is a Fortran wrapper to the LibTorch C++ framework using the iso_c_binding

module, intrinsic to Fortran since the 2003 standard. This enables shared memory use (where
possible) to maximise efficiency by reducing data-transfer during coupling1 and avoids any use
of Python at runtime. PyTorch types are represented through derived types in FTorch, with
Tensors supported across a range of data types and ranks using the fypp preprocessor (Aradi,
2024).

We utilise the existing support in LibTorch for GPU acceleration without additional device-
specific code. torch_tensors are targeted to a device through a device_type enum, currently
supporting CPU, CUDA, XPU, and MPS. Multiple GPUs may be targeted through the optional
device_index argument.

Typically, users train a model in PyTorch and save it as TorchScript, a strongly-typed subset of
Python. Once saved, the Torchscript model can be loaded from Fortran using FTorch and run
via the LibTorch backend. The library comes with a utility script (pt2ts.py) to assist with
the process of saving models as well as a comprehensive set of examples guiding users through
complete Python to Fortran workflows. A focus on user experience underpins the development
and is a key aspect behind the adoption of FTorch by various scientific communities.

Full details, including user guide, API documentation, slides and videos, and links to projects
is available at https://cambridge-iccs.github.io/FTorch.

Comparison to other approaches
• Replicating a net in Fortran

That is, taking a model developed in PyTorch and reimplementing it using only Fortran,
loading saved weights from file. This is likely to require considerable development effort,
re-writing code that already exists and missing opportunities to use the diverse and
highly-optimised features of Torch. Re-implementation can be a source of error, requiring
additional testing to ensure correctness.
If the overall goal is to incorporate ML into Fortran, rather than using PyTorch specif-
ically, then another approach is to leverage a Fortran-based ML framework such as
neural-fortran (Curcic, 2019). Whilst it does not allow interaction with PyTorch, neural-
fortran provides many neural network components for building nets directly in Fortran.
However, the set of features is not as rich as PyTorch and GPU offloading is not currently
supported.
The Fiats (‘Functional Inference And Training for Surrogates’) library (Rouson & Ras-
mussen, 2024) is another approach for developing, training, and deploying ML models
directly in Fortran, with experimental GPU support at present.

1i.e. the same data in memory is used by both LibTorch and Fortran without creating a copy.

Atkinson et al. (2025). FTorch: a library for coupling PyTorch models to Fortran. Journal of Open Source Software, 10(107), 7602. https:
//doi.org/10.21105/joss.07602.

2

https://cambridge-iccs.github.io/FTorch
https://github.com/modern-fortran/neural-fortran
https://berkeleylab.github.io/fiats
https://doi.org/10.21105/joss.07602
https://doi.org/10.21105/joss.07602


• Forpy (Rabel, 2020)
Forpy is a Fortran module that provides access to Python data structures (including
numpy arrays) for interoperability. Whilst this provides wider access to general Python
features it has a challenging interface with more boilerplate. It also requires access to
the Python runtime from Fortran.

• TorchFort (NVIDIA, 2024)
Since we began FTorch, NVIDIA has released TorchFort. This has a similar approach
to FTorch, avoiding Python to link against the LibTorch backend. It has a focus on
enabling GPU deployment on NVIDIA hardware.

• fortran-tf-lib (Cambridge-ICCS, 2023)
Whilst FTorch allows coupling of PyTorch models to Fortran, some use TensorFlow
(Abadi et al., 2015) to develop and train models. These can be coupled to Fortran in a
similar manner to FTorch by using fortran-tf-lib. Whilst it provides an alternative
solution, the library is less rich in features and software sustainability than FTorch.

• SmartSim (Partee et al., 2022)
SmartSim is a workflow library developed by HPE and built upon Redis API. It provides
a framework for launching ML and HPC workloads, transferring data between the two
via a database. This is a versatile approach that can work with a variety of languages
and ML frameworks. However, it has a significant learning curve, incurs data-transfer
overheads, and requires managing tasks from Python.

Examples of Use
FTorch is actively used in scientific research:

• in the DataWave project exploring gravity wave drag in atmospheric models to:

– couple an emulator into the MiMA model (DataWave, 2023) demonstrating variabil-
ity of models trained offline when coupled back to a host (Mansfield & Sheshadri,
2024).

– couple emulators and new data-driven parameterisations to the Community Atmos-
phere Model (CAM).

• to couple a U-Net based model of multi-scale convection into ICON (DKRZ, 2025) and
demonstrate via Shapley values that non-causal learnt relations are more stable when
running online (Heuer et al., 2024).

• As part of CESM (the Community Earth System Model) (NCAR, 2025) working to provide
a general approach for researchers to couple ML models to the various components of
the model suite.

Future development
Recent work in scientific domains suggests that online training is likely important for long-term
stability of hybrid models (Brenowitz et al., 2020). We therefore plan to extend FTorch to
expose PyTorch’s autograd functionality to support this.

We welcome feature requests and are open to discussion and collaboration.

Acknowledgments
This project is supported by Schmidt Sciences, LLC. We also thank the Institute of Computing
for Climate Science for their support.

Atkinson et al. (2025). FTorch: a library for coupling PyTorch models to Fortran. Journal of Open Source Software, 10(107), 7602. https:
//doi.org/10.21105/joss.07602.

3

https://datawaveproject.github.io/
https://www.icon-model.org/
https://www.cesm.ucar.edu/
https://doi.org/10.21105/joss.07602
https://doi.org/10.21105/joss.07602


References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,
Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow, Large-scale
machine learning on heterogeneous systems. https://doi.org/10.5281/zenodo.4724125

Aradi, B. (2024). Fypp. https://fypp.readthedocs.io

Bishara, D., Xie, Y., Liu, W. K., & Li, S. (2023). A state-of-the-art review on machine
learning-based multiscale modeling, simulation, homogenization and design of materials.
Archives of Computational Methods in Engineering, 30(1), 191–222. https://doi.org/10.
1007/s11831-022-09795-8

Bony, S., Stevens, B., Frierson, D. M., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G.,
Sherwood, S. C., Siebesma, A. P., Sobel, A. H., & others. (2015). Clouds, circulation and
climate sensitivity. Nature Geoscience, 8(4), 261–268. https://doi.org/10.1038/ngeo2398

Brenowitz, N. D., Henn, B., McGibbon, J., Clark, S. K., Kwa, A., Perkins, W. A., Watt-Meyer,
O., & Bretherton, C. S. (2020). Machine learning climate model dynamics: Offline versus
online performance. arXiv Preprint arXiv:2011.03081. https://doi.org/10.48550/arXiv.
2011.03081

Cambridge-ICCS. (2023). Fortran-tf-lib. https://github.com/Cambridge-ICCS/fortran-tf-lib

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., &
Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of Modern
Physics, 91(4), 045002. https://doi.org/10.1103/RevModPhys.91.045002

Curcic, M. (2019). A parallel Fortran framework for neural networks and deep learning. ACM
SIGPLAN Fortran Forum, 38, 4–21. https://doi.org/10.1145/3323057.3323059

DataWave. (2023). MiMA machine learning. https://github.com/DataWaveProject/
MiMA-machine-learning

DKRZ. (2025). ICON (icosahedral nonhydrostatic) model. https://www.icon-model.org/

Heuer, H., Schwabe, M., Gentine, P., Giorgetta, M. A., & Eyring, V. (2024). Interpretable
multiscale machine learning-based parameterizations of convection for ICON. Journal of
Advances in Modeling Earth Systems, 16(8), e2024MS004398. https://doi.org/10.1029/
2024MS004398

Kashinath, K., Mustafa, M., Albert, A., Wu, J., Jiang, C., Esmaeilzadeh, S., Azizzadenesheli,
K., Wang, R., Chattopadhyay, A., Singh, A., & others. (2021). Physics-informed machine
learning: Case studies for weather and climate modelling. Philosophical Transactions of
the Royal Society A, 379(2194), 20200093. https://doi.org/10.1098/rsta.2020.0093

Kedward, L. J., Aradi, B., Čertıḱ, O., Curcic, M., Ehlert, S., Engel, P., Goswami, R., Hirsch,
M., Lozada-Blanco, A., Magnin, V., & others. (2022). The state of Fortran. Computing
in Science & Engineering, 24(2), 63–72. https://doi.org/10.1109/MCSE.2022.3159862

Mansfield, L. A., & Sheshadri, A. (2024). Uncertainty quantification of a machine learning
subgrid-scale parameterization for atmospheric gravity waves. Journal of Advances in
Modeling Earth Systems, 16(7), e2024MS004292. https://doi.org/10.1029/2024MS004292

NCAR. (2025). CESM, the community earth system model. https://www.cesm.ucar.edu/

NVIDIA. (2024). TorchFort. https://nvidia.github.io/TorchFort/

Partee, S., Ellis, M., Rigazzi, A., Shao, A. E., Bachman, S., Marques, G., & Robbins, B.
(2022). Using machine learning at scale in numerical simulations with SmartSim: An
application to ocean climate modeling. Journal of Computational Science, 62, 101707.
https://doi.org/10.1016/j.jocs.2022.101707

Atkinson et al. (2025). FTorch: a library for coupling PyTorch models to Fortran. Journal of Open Source Software, 10(107), 7602. https:
//doi.org/10.21105/joss.07602.

4

https://doi.org/10.5281/zenodo.4724125
https://fypp.readthedocs.io
https://doi.org/10.1007/s11831-022-09795-8
https://doi.org/10.1007/s11831-022-09795-8
https://doi.org/10.1038/ngeo2398
https://doi.org/10.48550/arXiv.2011.03081
https://doi.org/10.48550/arXiv.2011.03081
https://github.com/Cambridge-ICCS/fortran-tf-lib
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1145/3323057.3323059
https://github.com/DataWaveProject/MiMA-machine-learning
https://github.com/DataWaveProject/MiMA-machine-learning
https://www.icon-model.org/
https://doi.org/10.1029/2024MS004398
https://doi.org/10.1029/2024MS004398
https://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1109/MCSE.2022.3159862
https://doi.org/10.1029/2024MS004292
https://www.cesm.ucar.edu/
https://nvidia.github.io/TorchFort/
https://doi.org/10.1016/j.jocs.2022.101707
https://doi.org/10.21105/joss.07602
https://doi.org/10.21105/joss.07602


Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., & others. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing Systems,
32.

Rabel, E. (2020). Forpy. https://github.com/ylikx/forpy

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes
in climate models. Proceedings of the National Academy of Sciences, 115(39), 9684–9689.
https://doi.org/10.1073/pnas.1810286115

Rouson, D., & Rasmussen, K. (2024). Fiats: Functional inference and training for surrogates.
https://github.com/BerkeleyLab/fiats

Atkinson et al. (2025). FTorch: a library for coupling PyTorch models to Fortran. Journal of Open Source Software, 10(107), 7602. https:
//doi.org/10.21105/joss.07602.

5

https://github.com/ylikx/forpy
https://doi.org/10.1073/pnas.1810286115
https://github.com/BerkeleyLab/fiats
https://doi.org/10.21105/joss.07602
https://doi.org/10.21105/joss.07602

	Summary
	Statement of need
	Software description
	Comparison to other approaches
	Examples of Use
	Future development
	Acknowledgments
	References

