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Summary
This package implements a method for solving problems in very viscous fluid dynamics, in
the limit where inertia is negligible relative to viscosity. This system is particularly relevant in
microscale biological systems and colloids; one specific application is the calculation of the
diffusion tensor of a specified structure. The underlying algorithm is the nearest-neighbour
implementation (Smith, 2018b) of the method of regularised stokeslets (Cortez, 2001; Cortez
et al., 2005); this approach enables efficient and accurate calculations requiring only surface
point discretisations rather than surface or volumetric meshes and avoids singular integrals. It
is a feature-complete reimplementation and further development of the key test cases in Smith
(2018b). The package also serves as an extensible library that can be utilised with the user’s
own surface discretisation to calculate the force and moment on any given three dimensional
body undergoing rigid body motion, and provides a building block to model flexible swimming
bodies.

Statement of need
Microscale biological flow problems typically involve complex-shaped bodies undergoing large
deformations, which renders analytical calculations or methods based on volumetric meshing
(finite element, finite difference) challenging to implement. However, in the case where the
fluid has Newtonian or approximately Newtonian properties, following non-dimensionalisation
the flow can be modelled through the linear Stokes flow equations,

−∇∇∇𝑝 +∇2𝑢𝑢𝑢 = 0, ∇∇∇ ⋅ 𝑢𝑢𝑢 = 0, (1)

where 𝑝(𝑥𝑥𝑥) and 𝑢𝑢𝑢(𝑥𝑥𝑥) are respectively pressure and velocity at the point 𝑥𝑥𝑥.

One of the basic problems of Stokes flow is the calculation of the force and moment on a
body immersed in a fluid and subject to no-slip, no-penetration boundary conditions, due to
specified rigid body motion. Mathematically, for a body with surface 𝐵 subject to translational
velocity 𝑈𝑈𝑈 and angular velocity ΩΩΩ about the origin, the problem is to solve equation (1) subject
to the boundary condition,

𝑢𝑢𝑢(𝑥𝑥𝑥) = 𝑈𝑈𝑈 +ΩΩΩ×𝑥𝑥𝑥, for all 𝑥𝑥𝑥 ∈ 𝐵, (2)

and thereby calculate the force and moment

𝐹𝐹𝐹 = ∬
𝐵
𝜎𝜎𝜎 ⋅ 𝑛𝑛𝑛 𝑑𝑆(𝑥𝑥𝑥), 𝑀𝑀𝑀 = ∬

𝐵
𝑥𝑥𝑥 ×𝜎𝜎𝜎 ⋅ 𝑛𝑛𝑛 𝑑𝑆(𝑥𝑥𝑥), (3)
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where the stress tensor is given in terms of the pressure and velocity by,

𝜎𝜎𝜎 = −𝑝𝐼𝐼𝐼 +∇∇∇𝑢𝑢𝑢 + (∇∇∇𝑢𝑢𝑢)𝑇.(4)

The system (1–4) forms the basis for more complex problems in which the body motion is not
prescribed, or the surface motion is non-rigid. Moreover due to the linearity and instantaneity
of the equations, the solution for translational velocity 𝑈𝑈𝑈 and angular velocity ΩΩΩ can be
determined from a linear combination of the ‘basic’ modes corresponding to unit velocity along
each Cartesian axis and unit angular velocity about each Cartesian axis; the basic functionality
of CNearest is to perform these calculations. The 6×6 matrix of force and moment coefficients
corresponding to each basic rigid body mode is referred to as the grand resistance matrix
(Pozrikidis, 2002) or frictional tensor (Wegener, 1981). The matrix inverse can be used to
calculate the diffusion tensor quantifying the translational and rotational Brownian motion of
the body (Wegener, 1981).

Linearity means that (1-4) can be solved through techniques such as the boundary element
method, which results in a linear algebra problem of the form,

[A] f = u,

where [A] is a 3𝑁 × 3𝑁 matrix formed by evaluating or integrating fundamental solutions
of (1), f is a 3𝑁-vector of unknown traction or force values at each degree of freedom, and
u is a 3𝑁-vector of velocities at each point of the discretisation. For more details, see for
example Pozrikidis (1992, 2002). However these techniques involve singular solutions which
present challenges for implementation. Moreover, despite its high numerical efficiency, the
boundary element method requires the user to supply a true surface mesh with connectivity
table and local basis system. The method of regularised stokeslets (Cortez, 2001; Cortez
et al., 2005) has achieved significant success in biological fluid dynamics (see for example
the Special Issue edited by Cortez and Olson (Cortez & Olson, 2021)) by removing both the
mathematically singular behaviour, and avoiding the need to construct a true mesh (see also
Smith (2009)). This package implements an extension of the method of regularised stokeslets
which utilises separate discretisations for the surface traction and quadrature. The method,
previously implemented in Matlab (Smith, 2018a) is based on nearest-neighbour interpolation,
and it removes the dependence of the linear system size on the quadrature error, greatly
improving accuracy and efficiency. The method distinguishes the size of the force discretisation
(𝑁) from the larger sized quadrature discretisation (𝑄). For more details, including application
to swimming problems and error analysis, see references (Gallagher et al., 2019; Gallagher &
Smith, 2018).

Despite its proven effectiveness, a barrier to wider adoption of the nearest neighbour discreti-
sation is that the existing implementation underpinning most of the references above is an
undocumented research code implemented in Matlab. That implementation primarily uses
built-in linear algebra operations throughout the workflow, from stokeslet evaluation through
matrix assembly, and avoids the use of for loops. While this approach has some advantages -
notably brief code and very simple exploitation of parallelism (Gallagher & Smith, 2020), it
tends to result in the storage of large stokeslet matrices, which can be highly inefficient as the
quadrature discretisation is refined. CNearest addresses these limitations.

In the wider setting of software packages and code for Stokes flow, we note several existing
packages with related but distinct aims, which the present package is intended to complement.
pyStokes (Singh & Adhikari, 2020) implements an efficient method for solving coupled Stokes
and Laplace problems associated with phoretic swimmers, utilising a spectral approximation to
the flow field around potentially large numbers of spherical particles. It is therefore particularly
suited to problems involving many bodies, but is less focused on detailed resolution of swimmer
morphology. Along similar lines, “Stokesian dynamics in Python” (Townsend, 2024) addresses
the need for efficient approximation of long range interactions of many particles; an older
package implementing a similar method is StokeD (Parker, 2016), also coded in Python.

Butcher et al. (2025). CNearest: A C++ toolkit to use the nearest-neighbour method of regularised stokeslets algorithm to solve viscous flow
problems. Journal of Open Source Software, 10(113), 7605. https://doi.org/10.21105/joss.07605.

2

https://doi.org/10.21105/joss.07605


Implementations of the method of regularised stokeslets include an undocumented parallelized
code repository of the classical method (Copos, 2020), and a more recent package which
enables the use of analytic surface integrals (Ferranti, 2024; Ferranti & Cortez, 2024). The
latter method greatly improves the accuracy and efficiency of the method of regularised
stokeslets, however it does require the generation of a true surface mesh rather than a point
cloud discretisation. Taken together, we believe that the present package addresses a gap for
an extensible, accessible and efficient methodology for Stokes flow problems, particularly those
involving complex geometries.

To enable efficient and scalable use of computing resources, the package is implemented in
C++, with the widely-used eigen package handling linear algebra operations (Guennebaud et
al., 2010). The package also provides three specific algorithmic developments, which arose
through the process of re-implementing the method in C++:

1. Tiebreaking: ensuring reproducibility of results when the nearest-neighbour mapping is
non-unique.

2. Stokeslet accumulation: building the left hand side 3𝑁 ×3𝑁 matrix by adding stokeslets
one at a time, rather than forming the larger 3𝑄 × 3𝑁 stokeslet matrix and multiplying
by a sparse projection matrix.

3. Rescaling by local stokeslet count: the degrees of freedom of the system are thereby the
physical force associated with each discretisation point, thereby ensuring that the matrix
and solution vector are convergent as the quadrature discretisation is refined.

Usage
The workflow is that the user will first define the problem in terms of physical bodies such as
spheres or spheroids (implementation of other shapes and flexible motions is an area for future
development) from which the force and quadrature discretisations are created, then finally
defining the boundary conditions. For the rigid body resistance problem (1-4) with no-slip,
no-penetration boundary conditions, the boundary velocity can be calculated from supplied
values of the translational and rotational velocity of the body, from which the surface velocity
components at each point are calculated.

The library then constructs a linear algebra problem by detecting nearest neighbours, managing
degrees of freedom, assembling matrices from the regularised stokeslets, and assembling
vectors from the boundary conditions. A linear solver (either the default solver based on
LU-decomposition with pivoting or an alternative chosen by the user) is invoked to find the
unknown force distribution over the nodes. Finally the same tools which constructed the full
size vectors are used to decompose them back to the total physical force and moment on the
body.

Validation
The results of the code have been compared with the results of the (established) Matlab
codebase. This comparison goes to make one of our suites of unit tests. This code is also
capable of reproducing the results tables published in Smith (2018b) for the force and moment
on a translating and rotating sphere and prolate spheroid. This comparison is presented
as examples 1 and 2 respectively (see examples/example-1-sphere and examples/example-2-
prolate-spheroid).

Summary and areas for future development
Potential areas for future development include solution of model cells with flexible flagella,
swimming problems (mobility due to a prescribed swimming stroke; (Gallagher & Smith, 2018)),
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multiple bodies and parallelisation (Gallagher & Smith, 2020), boundary image systems (Ainley
et al., 2008; Cortez & Varela, 2015), stokeslet lines (Cortez, 2018; Smith, 2009), stokeslets with
improved far field behaviour (Zhao et al., 2019), integration with elastohydrodynamics (Hall-
McNair et al., 2019), stokeslet rings (Tyrrell et al., 2019), Richardson extrapolation (Gallagher
& Smith, 2021), implementation of the double layer potential, which is highly important for
problems involving surface slip (Smith et al., 2021), modelling self-motile phoretic colloids
(Montenegro-Johnson et al., 2015) and fast multipole acceleration for very large problems
(Rostami & Olson, 2016).
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