
Parallel-CDM: Parallel Implementation of Continuum
Damage Mechanics Simulations using FEM and
MATLAB
Habiba Eldababy 1,2, Roshan Philip Saji1,2, Panos Pantidis3, and Mostafa
Mobasher1,3

1 Mechanical Engineering Department, Tandon School of Engineering, New York University, USA 2
Mechanical Engineering Department, New York University Abu Dhabi, UAE 3 Civil and Urban
Engineering Department, New York University Abu Dhabi, UAE

DOI: 10.21105/joss.07610

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @vijaysm
• @tiburoch

Submitted: 25 October 2024
Published: 13 August 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Statement of Need
Modeling fracture in materials and structures holds immense importance in our efforts to
understand how materials fail and hence design more fracture-resistant structures. Among the
several theories developed over the last decades, continuum damage mechanics (CDM) studies
the behavior of cracks in materials and structures from the viewpoint of continuous stiffness
degradation as the crack propagates inside the domain (Lemaitre, 2012). CDM simulations are
commonly implemented using the finite element method, however the associated computational
cost is notoriously elevated. With parallel computing becoming increasingly widespread, it
presents an efficient strategy for reducing the high computational cost associated with CDM
simulations. This open source code utilizes parallelization techniques for MATLAB in order to
significantly accelerate CDM simulations. Building upon previous work by the authors (Saji et
al., 2024), we develop a parallel MATLAB code and demonstrate the additional efficiency over
its serial counterpart. The code is geared for quasi-brittle materials, and it is implemented
with two relevant damage models (Mazars’ model (Mazars, 1986) and Geers’ model (Geers et
al., 1998)). Both the unified arc-length (UAL) and Newton–Raphson solvers can be used.

There are several FEM libraries with parallel capabilities publicly available, such as FEniCS
(The FEniCS Project, 2024), OOFEM (Öhman et al., 2020), Akantu (Richart et al., 2024),
OpenSees (Pacific Earthquake Engineering Research Center, 2025), and deal.II (Arndt et al.,
2021), but they use parallelization strategies such as domain decomposition and/or Message
Passing Interface (MPI) and require coding expertise from the user. Our code is unique in
its user-accessibility, given that it is written in MATLAB which many users are familiar with,
while also implementing parallelization techniques for complex continuum damage mechanics
simulations. Also, it features the implementation of a newly developed and robust Unified
arc-length solver (UAL) developed in Saji et al. (2024), which has demonstrated its superior
performance against the force-controlled arc-length (FAL) and Newton–Raphson (NR) solvers
both in terms of accuracy and time efficiency. For example, in a 1D bar problem modeled using
the non-local gradient damage and a weakened region in the middle (modulus of elasticity is
reduced by a factor of two), the UAL solver models the entire non-linear equilibrium path in
0.98 seconds with 97 increments, while the FAL and NR solvers require one to two orders of
magnitude more time and increments to trace the same path with a more relaxed convergence
tolerance (Saji et al., 2024). The UAL solver can trace equilibrium paths with snap-backs,
making it a suitable solver for a wide range of scenarios, which the NR solver cannot capture.
Furthermore, the UAL solver is not constrained by the need for small step sizes and relaxed
convergence tolerances that limit the usage of the FAL solver.

Eldababy et al. (2025). Parallel-CDM: Parallel Implementation of Continuum Damage Mechanics Simulations using FEM and MATLAB. Journal
of Open Source Software, 10(112), 7610. https://doi.org/10.21105/joss.07610.

1

https://orcid.org/0009-0005-1659-9411
https://doi.org/10.21105/joss.07610
https://github.com/openjournals/joss-reviews/issues/7610
https://github.com/Habiba-Eldababy/Parallel-CDM
https://doi.org/10.5281/zenodo.16790622
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/vijaysm
https://github.com/tiburoch
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07610


Methodology and Software Implementation
A flowchart of the code’s general functionality is shown in Figure 1. The function on which
we focus is the func_globalstiffness() function, which calculates and assembles the global
stiffness matrix, force vectors, and residual vector. The function also calculates the projection
matrices required for contour plotting once the numerical analysis of each load increment is
complete.

In MATLAB, parallelization relies on the Parallel Computing Toolbox, in which the user can
generate a parallel pool of workers. This parallelization is illustrated in Figure 2. In the
“solver” mode of the code, the function will assemble global matrices, so we implement the
single program multiple data (SPMD) construct in MATLAB since ordered execution and data
sharing between workers is needed. In the “plotting properties” mode, we use “parfor” as the
loop body is independent, and iterations can be executed in any order.

Figure 1: Flowchart of the general code structure

Eldababy et al. (2025). Parallel-CDM: Parallel Implementation of Continuum Damage Mechanics Simulations using FEM and MATLAB. Journal
of Open Source Software, 10(112), 7610. https://doi.org/10.21105/joss.07610.

2

https://doi.org/10.21105/joss.07610


Figure 2: Flowchart of the parallel func_globalstiffness() function which includes solving and plotting
properties routines

Testing and Results
A symmetric single notch tension (SSNT) problem is used to test the code’s effectiveness
following Saji et al. (2024) and Pantidis & Mobasher (2023). In Figure 3 we present the total
runtime of a fine (10201 elements) mesh on the New York University Abu Dhabi (NYUAD)
High Performance Computing (HPC) cluster, for serial and parallel implementation. From this
figure, it is clear that the parallelization exhibits significant cost improvement, with a factor of
three reduction in the total runtime of the code for a serial computation to parallel with 8, 16,
or 32 threads. Above 32 threads, Figure 3 reveals that additional parallel resources do not
provide further improvement for the size of this problem. When pursuing faster runtimes with
parallel computing, the overhead costs should be weighed against potential improvement in
speed.

Figure 3: Total runtime using fine mesh on HPC with the UAL solver. The number of threads is
represented on a logarithmic scale for clarity. Additional parallel resources reduce the runtime of a fine
mesh on the HPC cluster.

Acknowledgements
This work was partially supported by the Sand Hazards and Opportunities for Resilience,
Energy, and Sustainability (SHORES) Center, funded by Tamkeen under the NYUAD Research
Institute. The authors would also like to acknowledge the support of the NYUAD Center for
Research Computing for providing resources, services, and staff expertise.

Eldababy et al. (2025). Parallel-CDM: Parallel Implementation of Continuum Damage Mechanics Simulations using FEM and MATLAB. Journal
of Open Source Software, 10(112), 7610. https://doi.org/10.21105/joss.07610.

3

https://doi.org/10.21105/joss.07610


References
Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier,

M., Pelteret, J.-P., Turcksin, B., & Wells, D. (2021). The deal.II finite element library:
Design, features, and insights. Computers & Mathematics with Applications, 81, 407–422.
https://doi.org/10.1016/j.camwa.2020.02.022

EPFL LSMS. (2024). Akantu: A finite element library for complex multiphysics simulations.
https://akantu.ch/

Geers, M. G. D., Borst, R. de, Brekelmans, W. A. M., & Peerlings, R. H. J. (1998). Strain-
based transient-gradient damage model for failure analyses. Computer Methods in Applied
Mechanics and Engineering. https://doi.org/10.1016/S0045-7825(98)80011-X

Lemaitre, J. (2012). A course on damage mechanics. Springer. https://doi.org/10.1007/
978-3-642-18255-6

Mazars, J. (1986). A description of micro-and macroscale damage of concrete structures. En-
gineering Fracture Mechanics, 25(5-6), 729–737. https://doi.org/10.1016/0013-7944(86)
90036-6

Öhman, M., Patzak, B., Brouzoulis, J., Smilauer, V., milanjirasek, Grassl, P., graspel, feymark,
CarlSandstrom, nitramkaroh, MartinFagerstrom, pedroskop, Främby, J., eudoxos, Sciegaj,
A., editaDvorakova, Sulc, S., Stránský, J., karelmikes, … vmonkey. (2020). Oofem/oofem:
OOFEM, version 2.5 (Version v2.5). Zenodo. https://doi.org/10.5281/zenodo.4339630

Pacific Earthquake Engineering Research Center. (2025). OpenSees: Open system for
earthquake engineering simulation. https://opensees.berkeley.edu/

Pantidis, P., & Mobasher, M. E. (2023). Integrated finite element neural network (i-FENN) for
non-local continuum damage mechanics. Computational Methods in Applied Mechanics
and Engineering, 404, 115766. https://doi.org/10.1016/j.cma.2022.115766

Richart, N., Anciaux, G., Gallyamov, E., Frérot, L., Kammer, D., Pundir, M., Vocialta,
M., Ramos, A. C., Corrado, M., Müller, P., Barras, F., Zhang, S., Ferry, R., Durussel,
S., & Molinari, J.-F. (2024). Akantu: An HPC finite-element library for contact and
dynamic fracture simulations. Journal of Open Source Software, 9(94), 5253. https:
//doi.org/10.21105/joss.05253

Saji, R. P., Pantidis, P., & Mobasher, M. E. (2024). A new unified arc-length method
for damage mechanics problems. Computational Mechanics. https://doi.org/10.1007/
s00466-024-02473-5

The FEniCS Project. (2024). FEniCS project. https://fenicsproject.org/

Eldababy et al. (2025). Parallel-CDM: Parallel Implementation of Continuum Damage Mechanics Simulations using FEM and MATLAB. Journal
of Open Source Software, 10(112), 7610. https://doi.org/10.21105/joss.07610.

4

https://doi.org/10.1016/j.camwa.2020.02.022
https://akantu.ch/
https://doi.org/10.1016/S0045-7825(98)80011-X
https://doi.org/10.1007/978-3-642-18255-6
https://doi.org/10.1007/978-3-642-18255-6
https://doi.org/10.1016/0013-7944(86)90036-6
https://doi.org/10.1016/0013-7944(86)90036-6
https://doi.org/10.5281/zenodo.4339630
https://opensees.berkeley.edu/
https://doi.org/10.1016/j.cma.2022.115766
https://doi.org/10.21105/joss.05253
https://doi.org/10.21105/joss.05253
https://doi.org/10.1007/s00466-024-02473-5
https://doi.org/10.1007/s00466-024-02473-5
https://fenicsproject.org/
https://doi.org/10.21105/joss.07610

	Statement of Need
	Methodology and Software Implementation
	Testing and Results
	Acknowledgements
	References

