
UXsim: lightweight mesoscopic traffic flow simulator
in pure Python
Toru Seo 1

1 Department of Civil and Environmental Engineering, Institute of Science Tokyo, Japan
DOI: 10.21105/joss.07617

Software
• Review
• Repository
• Archive

Editor: Kanishka B. Narayan
Reviewers:

• @fxjung
• @Nitnelav

Submitted: 07 October 2024
Published: 06 February 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Car traffic plays an essential role in today’s cities. However, it faces severe issues such as time
loss due to congestion, accidents, and environmental pollution. Proper traffic planning and
control are necessary to solve these issues. Traffic flow simulators are powerful engineering
tools for such purposes. By using traffic flow simulators, one can test and optimize traffic plans
or control strategies before implementing them in the real world. Furthermore, traffic flow
simulators can be used for pure academic or scientific experiments to investigate the complex
physics of traffic flow.

UXsim is a pure Python package for traffic flow simulation that is suitable for simulating a wide
range of scenarios, from simple toy networks to large-scale (e.g., city-wide) traffic phenomena.
It computes dynamic traffic flow in arbitrary road networks with arbitrary travel demands. For
example, it can simulate how traffic jams evolve in a city, how people reroute to avoid them,
and how traffic management schemes can improve the situation.

Statement of need
In general, traffic flow simulators are divided into two major categories: microscopic and
macroscopic. The former focuses on detailed individual vehicle behaviors, whereas the latter
focuses on the collective behavior of large-scale (e.g., city-scale) traffic. Mesoscopic traffic
flow simulators, which is sometimes categorized into macroscopic ones, are a mixture of the
two; while they describe individual vehicle behaviors to some extent, their primary intention is
to simulate the collective behavior of large-scale traffic. Mesoscopic simulators are particularly
useful for modeling large-scale traffic management and operations, such as congestion pricing,
ridesharing, and automated vehicle fleet management, which are increasingly prominent these
days. Several microscopic traffic flow simulators are published as open source software, such as
SUMO (Lopez et al., 2018). However, to the author’s knowledge, the availability of mesoscopic
and macroscopic simulators is limited.

UXsim is a mesoscopic (or macroscopic depending on the technical terminology) traffic flow
simulator. It is particularly designed to be simple, lightweight, and easy to use, thanks to the
simplicity of mesoscopic traffic flow models. Therefore, it can be readily used by users to
simulate small-scale to large-scale traffic flow. It also includes built-in analysis and visualization
capabilities for simulation results.

A unique feature of UXsim is that it is written in pure Python. Except for common components
in NumPy and SciPy, no pre-compiled binary is used in UXsim. Therefore, it can be easily and
deeply integrated with other Python-based frameworks, such as PyTorch for deep reinforcement
learning-based traffic control. Users with Python knowledge can customize the code of UXsim
to make it suitable for their own purposes. This makes UXsim a powerful tool for state-of-
the-art research. Nevertheless, the computation speed is not too slow, leveraging mesoscopic

Seo. (2025). UXsim: lightweight mesoscopic traffic flow simulator in pure Python. Journal of Open Source Software, 10(106), 7617. https:
//doi.org/10.21105/joss.07617.

1

https://orcid.org/0000-0001-9767-7218
https://doi.org/10.21105/joss.07617
https://github.com/openjournals/joss-reviews/issues/7617
https://github.com/toruseo/UXsim
https://doi.org/10.5281/zenodo.14799163
https://orcid.org/0000-0001-8483-6216
https://github.com/fxjung
https://github.com/Nitnelav
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07617
https://doi.org/10.21105/joss.07617

traffic flow simulation techniques and the NumPy and SciPy packages.

UXsim can be used by any user who has basic Python skills and an interest in traffic. It can
be used for various purposes, such as university education and as an experimental environment
for researchers in fields like civil engineering, urban planning, operations research, computer
science, and others. It has already been used in a number of scientific publications such as
Large Language Model-based system control (Cheng et al., 2024), traffic signal optimization
in a network (Iizuka & Seo, 2024), and strategic impact evaluation of automated vehicles on a
regional scale (Ter Hoeven, 2024).

Related works
Several open source traffic simulators have been published and are widely used by the community.
See Lovelace (2021) for a more comprehensive survey of open source software for transport
planning, including traffic simulators.

SUMO (Lopez et al., 2018) is perhaps the most popular traffic simulator. It is a microscopic
traffic simulator with a Python interface TraCI and an optional mesoscopic simulation mode.
There are several other open source microscopic traffic simulators, for example, MovSim (Treiber
& Kesting, 2010), A/B Street (Carlino et al., 2018), and CityFlow (Zhang et al., 2019),
to name a few. However, the primary objectives of microscopic simulators are significantly
different from those of macroscopic or mesoscopic ones. They aim to describe detailed driving
behaviors of individual vehicles to simulate microscopic interactions, such as lane-changing and
conflicts at intersections. While these microscopic phenomena are very important for some
purposes, they may not be essential when evaluating city-wide traffic management. Additionally,
microscopic simulators generally require extensive information, such as detailed road geometry
and a large number of model parameters, which makes preparations and calibrations difficult.

MATSim (Horni et al., 2016) is a more strategic-level transportation simulator that aims to
simulate activity-travel behavior. In fact, a certain mode (kinematicWaves) of MATSim uses
models that are equivalent to those in UXsim. However, MATSim focuses more on holistic
mobility, including people’s travel decisions and mode choices in multi-modal transportation
systems. UXsim focuses on traffic flow simulation, making it simpler and easier to use and
integrate with other codes.

dyntapy (Ortmann & Tampère, 2022) is a macroscopic traffic simulator in Python. While
it shares several features with UXsim, there are some distinct differences. UXsim is based
on a discretized (agent-based) modeling framework, in contrast to the continuous modeling
framework of dyntapy. The advantage of the former is more flexible modeling of traveler
behavior and vehicle routing, while the disadvantage is higher computational cost and numerical
discrepancies with the original mathematical traffic flow theory. Related to this, UXsim allows
simulation to be run incrementally, and users can flexibly intervene by coding. This provides
an excellent opportunity to implement traffic control and management schemes. DTALite
(DTALite Team, 2020; Zhou & Taylor, 2014) is a mesoscopic traffic simulator written in C++.
Its features are similar to those of dyntapy.

Models
UXsim implements the following models, which are based on rigorous, well-validated, and
commonly utilized theories by both researchers and practitioners:

• Newell’s simplified car-following model (Newell, 2002) and its mesoscopic extension
X-model (Laval & Leclercq, 2013) for traffic behavior on each link, such as acceleration
and deceleration of vehicles.

• Incremental Node Model (Flötteröd & Rohde, 2011) and its mesoscopic version (Flötteröd,
2016) for traffic behavior at each intersection, such as merging and waiting.

Seo. (2025). UXsim: lightweight mesoscopic traffic flow simulator in pure Python. Journal of Open Source Software, 10(106), 7617. https:
//doi.org/10.21105/joss.07617.

2

https://doi.org/10.21105/joss.07617
https://doi.org/10.21105/joss.07617

• Dynamic User Optimum-type route choice model (Kuwahara & Akamatsu, 2001) for
drivers’ route choices that prefer the shortest path based on travel time information.

In addition, the models implemented in UXsim are slightly extended from the original ones to
represent more realistic traffic behavior as follows:

• The mesoscopic car-following model is extended to a single-pipe, multi-lane model to
accommodate higher traffic capacity depending on the number of lanes on each link.

• Explicit consideration of traffic signals and bottlenecks at nodes.
• Stochasticity and delay are incorporated into the route choice model to stabilize traffic

patterns.

Detailed explanations of the mathematics and algorithms behind UXsim are described in Seo
(2023a) and Seo (2023b).

Examples
Various examples and demos are available as Python scripts and Jupyter notebooks in the
GitHub repository of UXsim. This section introduces three examples to illustrate some of the
key features of UXsim: simplicity, controllability, and scalability. They are also available at the
GitHub repository in executable notebooks, with detailed explanations.

Simple example
Code

The following code executes UXsim in a simple setting.

from uxsim import World

Define the main simulation

Units are standardized to seconds (s) and meters (m)

W = World(

name="", # Scenario name

deltan=5, # Simulation aggregation unit delta n

tmax=1200, # Total simulation time (s)

print_mode=1, save_mode=1, show_mode=1, # Various options

random_seed=0 # Set the random seed

)

Define the scenario

Create nodes

W.addNode(name="orig1", x=0, y=0) #xy coords are for visualization

W.addNode(name="orig2", x=0, y=2)

W.addNode(name="merge", x=1, y=1)

W.addNode(name="dest", x=2, y=1)

Create links between nodes

W.addLink(name="link1", start_node="orig1", end_node="merge",

length=1000, free_flow_speed=20, number_of_lanes=1)

W.addLink(name="link2", start_node="orig2", end_node="merge",

length=1000, free_flow_speed=20, number_of_lanes=1)

W.addLink(name="link3", start_node="merge", end_node="dest",

length=1000, free_flow_speed=20, number_of_lanes=1)

Create OD traffic demand between nodes

W.adddemand(orig="orig1", dest="dest", t_start=0, t_end=1000, flow=0.45)

W.adddemand(orig="orig2", dest="dest", t_start=400, t_end=1000, flow=0.6)

Seo. (2025). UXsim: lightweight mesoscopic traffic flow simulator in pure Python. Journal of Open Source Software, 10(106), 7617. https:
//doi.org/10.21105/joss.07617.

3

https://doi.org/10.21105/joss.07617
https://doi.org/10.21105/joss.07617

Run the simulation to the end

W.exec_simulation()

Print summary of simulation result

W.analyzer.print_simple_stats()

Visualize snapshots of network traffic state for several timesteps

W.analyzer.network(t=100, detailed=1, network_font_size=12)

W.analyzer.network(t=600, detailed=1, network_font_size=12)

W.analyzer.network(t=800, detailed=1, network_font_size=12)

The meaning of each function would be intuitive for Python users. It simulates traffic flow in
a Y-shaped network with four nodes (intersections) and three links (roads).

Results

It outputs the following text to stdout.

simulation setting:

scenario name:

simulation duration: 1200 s

number of vehicles: 810 veh

total road length: 3000 m

time discret. width: 5 s

platoon size: 5 veh

number of timesteps: 240

number of platoons: 162

number of links: 3

number of nodes: 4

setup time: 0.00 s

simulating...

time| # of vehicles| ave speed| computation time

0 s| 0 vehs| 0.0 m/s| 0.00 s

600 s| 130 vehs| 13.7 m/s| 0.03 s

1195 s| 75 vehs| 12.3 m/s| 0.06 s

simulation finished

results:

average speed: 11.6 m/s

number of completed trips: 735 / 810

average travel time of trips: 162.6 s

average delay of trips: 62.6 s

delay ratio: 0.385

The simulation of 810 vehicles for 20 minutes duration was finished in 0.06 seconds on a
standard office PC.

It also outputs the figures shown in Figure 1 that visualize the network traffic states. In the
figures, vehicles travel from left to right. A light-colored segment is with free-flowing traffic,
and dark-colored one is with traffic jam. Therefore, it means traffic jam occurred at the upper
link “link2” due to a merge at the “merge” node.

Seo. (2025). UXsim: lightweight mesoscopic traffic flow simulator in pure Python. Journal of Open Source Software, 10(106), 7617. https:
//doi.org/10.21105/joss.07617.

4

https://doi.org/10.21105/joss.07617
https://doi.org/10.21105/joss.07617

Figure 1: Network traffic states in the simple example.

Traffic signal control by deep reinforcement learning
In this example, we optimize traffic signal setting (which direction should have green light under
what conditions) using UXsim and deep reinforcement learning (more specifically, Deep-Q
Network (Mnih et al., 2015)) implemented by PyTorch. A small road network with 4 signalized
intersections with given traffic demand is simulated. Figure 2 shows the learning progress.
Figure 3 shows typical network traffic states in some episodes. We can confirm that it converged
to a very efficient traffic situation where vehicles are not delayed significantly by the traffic
signals.

Figure 2: Learning process of traffic signal control by deep reinforcement learning.

Figure 3: Traffic state in signalized intersections. left: 1st episode, middle: 100th episode, right: the
best one in 200 episodes.

Metropolitan-scale simulation
In this example, trips of nearly 1 million vehicles during a rush hour in Chicago metropolitan area
are simulated, just in 40 seconds. We use a dataset called “Chicago-Sketch” (Transportation

Seo. (2025). UXsim: lightweight mesoscopic traffic flow simulator in pure Python. Journal of Open Source Software, 10(106), 7617. https:
//doi.org/10.21105/joss.07617.

5

https://doi.org/10.21105/joss.07617
https://doi.org/10.21105/joss.07617

Networks for Research Core Team, 2018) that has been widely utilized for transportation
research. Figure 4 shows some of the vehicle trajectories at a certain time step in the simulation.

Figure 4: Snapshot of vehicle trajectories in Chicago simulation.

The “Chicago-Sketch” dataset contains reference traffic data such as link traffic volume and
travel time. The comparison of UXsim results and the reference values are shown in Figure 5.
Because these values were computed by different methods, we cannot draw precise conclusions
about the accuracy of UXsim, but at least we can say that the results are well correlated and
UXsim outputs plausible results.

Figure 5: Comparison of UXsim results and the reference values. left: traffic volume, right: travel time.

Seo. (2025). UXsim: lightweight mesoscopic traffic flow simulator in pure Python. Journal of Open Source Software, 10(106), 7617. https:
//doi.org/10.21105/joss.07617.

6

https://doi.org/10.21105/joss.07617
https://doi.org/10.21105/joss.07617

Acknowledgements
The author would like to thank contributions from Ewout ter Hoeven and various feedbacks
from them, the reviewers, and other users.

References
Carlino, D., Li, Y., & Kirk, M. (2018). A/B Street. In GitHub repository. GitHub. https:

//github.com/a-b-street/abstreet

Cheng, C.-A., Nie, A., & Swaminathan, A. (2024). Trace is the new AutoDiff–unlocking
efficient optimization of computational workflows. arXiv Preprint arXiv:2406.16218. https:
//doi.org/10.48550/arXiv.2406.16218

DTALite Team. (2020). DTALite. In GitHub repository. GitHub. https://github.com/
asu-trans-ai-lab/DTALite

Flötteröd, G. (2016). Queueing representation of kinematic waves. In The multi-agent
transport simulation MATSim (pp. 347–351). https://doi.org/10.5334/baw

Flötteröd, G., & Rohde, J. (2011). Operational macroscopic modeling of complex urban
road intersections. Transportation Research Part B: Methodological, 45(6), 903–922.
https://doi.org/10.1016/j.trb.2011.04.001

Horni, A., Nagel, K., & Axhausen, K. W. (Eds.). (2016). The multi-agent transport simulation
MATSim. London: Ubiquity Press. https://doi.org/10.5334/baw

Iizuka, K., & Seo, T. (2024). Passenger-oriented distributed traffic signal control using
dynamic programming with vehicle queue spillback and waiting time constraints. Interna-
tional Journal of Intelligent Transportation Systems Research. https://doi.org/10.1007/
s13177-024-00418-z

Kuwahara, M., & Akamatsu, T. (2001). Dynamic user optimal assignment with physical
queues for a many-to-many OD pattern. Transportation Research Part B: Methodological,
35(5), 461–479. https://doi.org/10.1016/S0191-2615(00)00005-9

Laval, J. A., & Leclercq, L. (2013). The Hamilton–Jacobi partial differential equation and the
three representations of traffic flow. Transportation Research Part B: Methodological, 52,
17–30. https://doi.org/10.1016/j.trb.2013.02.008

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R.,
Lücken, L., Rummel, J., Wagner, P., & Wießner, E. (2018). Microscopic traffic simulation
using SUMO. 2018 21st International Conference on Intelligent Transportation Systems,
2575–2582.

Lovelace, R. (2021). Open source tools for geographic analysis in transport planning. Journal
of Geographical Systems, 23(4), 547–578. https://doi.org/10.1007/s10109-020-00342-2

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., & others. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540), 529. https://doi.org/10.1038/
nature14236

Newell, G. F. (2002). A simplified car-following theory: A lower order model. Transportation Re-
search Part B: Methodological, 36(3), 195–205. https://doi.org/10.1016/S0191-2615(00)
00044-8

Ortmann, P., & Tampère, C. M. J. (2022). dyntapy: Dynamic and static traffic assignment in
Python. Journal of Open Source Software, 7(77), 4593. https://doi.org/10.21105/joss.
04593

Seo. (2025). UXsim: lightweight mesoscopic traffic flow simulator in pure Python. Journal of Open Source Software, 10(106), 7617. https:
//doi.org/10.21105/joss.07617.

7

https://github.com/EwoutH
https://github.com/a-b-street/abstreet
https://github.com/a-b-street/abstreet
https://doi.org/10.48550/arXiv.2406.16218
https://doi.org/10.48550/arXiv.2406.16218
https://github.com/asu-trans-ai-lab/DTALite
https://github.com/asu-trans-ai-lab/DTALite
https://doi.org/10.5334/baw
https://doi.org/10.1016/j.trb.2011.04.001
https://doi.org/10.5334/baw
https://doi.org/10.1007/s13177-024-00418-z
https://doi.org/10.1007/s13177-024-00418-z
https://doi.org/10.1016/S0191-2615(00)00005-9
https://doi.org/10.1016/j.trb.2013.02.008
https://doi.org/10.1007/s10109-020-00342-2
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/S0191-2615(00)00044-8
https://doi.org/10.1016/S0191-2615(00)00044-8
https://doi.org/10.21105/joss.04593
https://doi.org/10.21105/joss.04593
https://doi.org/10.21105/joss.07617
https://doi.org/10.21105/joss.07617

Seo, T. (2023a). Macroscopic traffic flow simulation: Fundamental mathematical theory and
Python implementation. Corona Publishing Co., Ltd.

Seo, T. (2023b). UXsim: An open source macroscopic and mesoscopic traffic simulator in
Python—a technical overview. arXiv Preprint arXiv: 2309.17114. https://doi.org/10.
48550/arXiv.2309.17114

Ter Hoeven, E. (2024). When do autonomous vehicles solve or exacerbate different urban
mobility problems? [Master’s thesis]. Delft University of Technology.

Transportation Networks for Research Core Team. (2018). Transportation networks for research.
In GitHub repository. GitHub. https://github.com/bstabler/TransportationNetworks

Treiber, M., & Kesting, A. (2010). An open-source microscopic traffic simulator. IEEE
Intelligent Transportation Systems Magazine, 2(3), 6–13. https://doi.org/10.1109/MITS.
2010.939208

Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z., Zhang, W., Yu, Y., Jin, H., & Li, Z.
(2019). Cityflow: A multi-agent reinforcement learning environment for large scale city
traffic scenario. arXiv Preprint arXiv:1905.05217. https://doi.org/10.48550/arXiv.2406.
16218

Zhou, X., & Taylor, J. (2014). DTALite: A queue-based mesoscopic traffic simulator for fast
model evaluation and calibration. Cogent Engineering, 1(1), 961345. https://doi.org/10.
1080/23311916.2014.961345

Seo. (2025). UXsim: lightweight mesoscopic traffic flow simulator in pure Python. Journal of Open Source Software, 10(106), 7617. https:
//doi.org/10.21105/joss.07617.

8

https://doi.org/10.48550/arXiv.2309.17114
https://doi.org/10.48550/arXiv.2309.17114
https://github.com/bstabler/TransportationNetworks
https://doi.org/10.1109/MITS.2010.939208
https://doi.org/10.1109/MITS.2010.939208
https://doi.org/10.48550/arXiv.2406.16218
https://doi.org/10.48550/arXiv.2406.16218
https://doi.org/10.1080/23311916.2014.961345
https://doi.org/10.1080/23311916.2014.961345
https://doi.org/10.21105/joss.07617
https://doi.org/10.21105/joss.07617

	Summary
	Statement of need
	Related works
	Models
	Examples
	Simple example
	Code
	Results

	Traffic signal control by deep reinforcement learning
	Metropolitan-scale simulation

	Acknowledgements
	References

