
foamlib: A modern Python package for working with
OpenFOAM
Gabriel S. Gerlero 1,2¶ and Pablo A. Kler 1,3

1 Centro de Investigación en Métodos Computacionales (CIMEC), UNL-CONICET, Argentina 2
Universidad Nacional de Rafaela (UNRaf), Argentina 3 Departamento de Ingeniería en Sistemas de
Información, Universidad Tecnológica Nacional (UTN), Facultad Regional Santa Fe, Argentina ¶
Corresponding author

DOI: 10.21105/joss.07633

Software
• Review
• Repository
• Archive

Editor: Mojtaba Barzegari
Reviewers:

• @AndreWeiner
• @Failxxx
• @paugier

Submitted: 13 November 2024
Published: 23 May 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
foamlib is an open-source Python package that provides a high-level, modern, object-oriented
programming interface for working with OpenFOAM cases and their files. It is designed to
simplify the development of workflows that involve running OpenFOAM simulations, as well
as pre- and post-processing steps. foamlib understands OpenFOAM’s file formats and case
structures, and provides an ergonomic, Pythonic API for manipulating cases and files, including
a full parser and in-place editor for the latter. It also includes support for running OpenFOAM
cases asynchronously and on Slurm-based HPC clusters.

Statement of need
foamlib is a Python package that offers a high-level programming interface for manipulating
OpenFOAM cases and files, including a full standalone parser and in-place editor for the latter.
It is not a thin wrapper library around existing OpenFOAM commands, nor does it provide
Python bindings for OpenFOAM’s C++-based code. Except for workflows that specifically
involve running OpenFOAM solvers or utilities, foamlib can be used by itself without requiring
an installation of OpenFOAM, e.g., allowing for pre- or post-processing steps to be performed
on a different system than is used to run the simulations.

Dealing with OpenFOAM simulations from Python can be challenging, as (i) OpenFOAM
uses its own non-standard file format that is not trivial to parse, and (ii) actually running
OpenFOAM cases programmatically can require substantial boilerplate code for determining
the correct commands to use, and then invoking said commands while accounting for other
relevant considerations such as avoiding oversubscription of CPU resources when executing
multiple cases at the same time. foamlib aims to address these challenges by providing a
modern Python interface for interacting with OpenFOAM cases and files. By abstracting away
the details of OpenFOAM’s file formats, case structures, and recipes for execution, foamlib
makes it easier to create Python-based workflows that involve running OpenFOAM simulations,
as well as their pre- and post-processing steps. The ultimate goal of foamlib is that code for
common OpenFOAM workflows, such as running parallel or HPC-based optimization loops,
can be easily written in a concise, readable, and composable manner.

The closest existing software to foamlib is PyFoam (Gschaider, 2023), which is an established
package that provides an alternative approach for working with OpenFOAM from Python. We
believe that foamlib offers several advantages over it, notably including compatibility with
current versions of Python, transparent support for fields stored in binary format, a more
Pythonic fully type-hinted API with PEP 8–compliant naming, as well as support for other
modern Python features such as asynchronous operations. We would also like to mention here

Gerlero, & Kler. (2025). foamlib: A modern Python package for working with OpenFOAM. Journal of Open Source Software, 10(109), 7633.
https://doi.org/10.21105/joss.07633.

1

https://orcid.org/0000-0002-5138-0328
https://orcid.org/0000-0003-4217-698X
https://doi.org/10.21105/joss.07633
https://github.com/openjournals/joss-reviews/issues/7633
https://github.com/gerlero/foamlib
https://doi.org/10.5281/zenodo.15442960
http://mbarzegary.github.io/
https://orcid.org/0000-0002-1456-0610
https://github.com/AndreWeiner
https://github.com/Failxxx
https://github.com/paugier
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07633


other Python packages with similar functionality—most notably including the ability to parse
OpenFOAM output files—: fluidfoam (CyrilleBonamy et al., 2025), fluidsimfoam (Augier &
Danaeifar, 2025) and Ofpp (Xianghua, 2023).

Features

Requirements and installation
foamlib is published on PyPI and conda-forge, meaning that it can be easily installed using
either pip or conda. The only prerequisite is having an installation of Python 3.7 and later, with
3.7 being chosen due to the fact that many high-performance computing (HPC) environments
do not provide more up-to-date Python versions. However, in contrast with PyFoam, which is
not currently compatible with Python releases newer than 3.11, foamlib works and is tested
with all supported Python versions up to the current Python 3.13.

Besides the recommended packaged installs, official Docker images are also made available
(with variants with or without OpenFOAM provided).

Rationale for building a standalone library

foamlib is designed to be a standalone library that can be used independently of OpenFOAM
itself. Notably, it does not expose or use the OpenFOAM C++ API itself. This allows
foamlib to avoid any kind of dependence on any version or distribution of OpenFOAM, which
is especially relevant considering that OpenFOAM is available in two major, incrementally
diverging distributions. This design choice also allows for the development of workflows that
involve OpenFOAM simulations to be performed on a different system than the one used
to run the simulations. The major disadvantage of this approach is that foamlib needs to
maintain its own implementation of an OpenFOAM file parser. However, this is mitigated
by the fact that OpenFOAM’s file formats are not expected to change frequently, and that
foamlib’s parser is designed to be flexible and easily extensible.

OpenFOAM distribution support

foamlib is tested with both newer and older OpenFOAM versions from both major distributions
(i.e., openfoam.com and openfoam.org). Nevertheless, as mentioned before, OpenFOAM itself
is not a required dependency of foamlib, being only necessary for actually running OpenFOAM
solvers and utilities.

OpenFOAM case manipulation
foamlib provides an object-oriented interface for interacting with OpenFOAM cases.
The main classes for this purpose are FoamCaseBase, FoamCase, AsyncFoamCase, and
AsyncSlurmFoamCase; all of which are presented below.

FoamCaseBase class

The FoamCaseBase class is the base class for all OpenFOAM case manipulation classes in
foamlib. It takes the path to an OpenFOAM case on construction, and provides methods for
inspecting and manipulating the case structure, whether before, during or after running the
case. FoamCaseBase behaves as a sequence of FoamCaseBase.TimeDirectory objects, each
representing a time directory in the case. FoamCaseBase.TimeDirectory objects themselves
are mapping objects that provide access to the field files present in each time directory (as
FoamFieldFiles—read below for information on file manipulation). Note, as of now, even in
the case of a decomposed case, the TimeDirectory object will iterate over the reconstructed
time directories.

Gerlero, & Kler. (2025). foamlib: A modern Python package for working with OpenFOAM. Journal of Open Source Software, 10(109), 7633.
https://doi.org/10.21105/joss.07633.

2

https://www.openfoam.com
https://www.openfoam.org
https://doi.org/10.21105/joss.07633


FoamCase class

The FoamCase class is a subclass of FoamCaseBase that adds functionality for running Open-
FOAM cases. It is meant to be the default class used for interacting with OpenFOAM cases in
foamlib. The following methods are present in FoamCase objects:

• run(): runs an OpenFOAM case
• clean(): removes files generated during the case run
• copy(): copies the case to a new location
• clone(): makes a clean copy of the case (equivalent to copy() followed by clean()—but

may be more efficient)

Notably, the run() method can automatically determine how to run a case based on inspecting
its contents and applying some heuristics. If a run or Allrun (or Allrun-parallel) script is
present in the case directory, it will be used to run the case. Otherwise, the run() method can
execute blockMesh, invoke an Allrun.pre script, restore the “0” directory from a backup, run
decomposePar, and/or run the required solver (as set in the case’s controlDict) in serial or
parallel mode, as required by the case. The behavior can be customized by passing specific
arguments to the run() method.

By default, the run() method creates log files in the case directory that capture the output
of the invoked commands. Besides being included within the log files, the contents of the
standard error stream (stderr) are also stored in memory so that they can be shown in the
exception message if a command fails, for easier debugging.

The clean() method removes all files generated during the case run. It uses a clean or
Allclean script if present, or otherwise invokes logic that removes files and directories that
can be re-created by running the case.

foamlib is also designed in a way that it can be directly used within Python-based (All)run

and (All)clean scripts, without risk of calls to run() and clean() causing infinite recursion.

Besides being usable as regular methods, both copy() and clone() also permit usage as
context managers (i.e., with Python’s with statement), which can be used to create temporary
copies of a case, e.g., for testing or optimization runs. Cases created this way are automatically
deleted when exiting the relevant code block.

AsyncFoamCase class

AsyncFoamCase is an alternative subclass of FoamCaseBase that provides an asynchronous
interface for running OpenFOAM cases. It is designed to work with Python’s asyncio library,
allowing for the execution of multiple OpenFOAM cases concurrently in a single Python process.

In AsyncFoamCase, all of the run(), clean(), copy(), and clone() methods are asynchronous
coroutines, which can be simply awaited from other asynchronous code. These methods
otherwise retain the same semantics as their synchronous counterparts in FoamCase.

In order to avoid oversubscription of the available computational resources, AsyncFoamCase
defines a mutable class attribute named max_cpus (defaulting to the number of available CPUs)
that limits how many cases can be run concurrently. If a run() call being awaited requires
more CPUs than are available, the case will not be executed immediately but will rather wait
until enough CPUs are freed up by the completion of other run() calls.

Besides its obvious use to orchestrate parallel optimization loops, AsyncFoamCase can also be
used to speed up testing workflows that involve running multiple OpenFOAM cases by running
them concurrently. For instance, it can be used in conjunction with the pytest (Krekel et al.,
2004) framework and the pytest-asyncio-cooperative (Thiart, 2024) plugin, as the authors
of this paper currently do to test several OpenFOAM-based projects (Gerlero et al., 2021,
2024; Gerlero, 2024; Gerlero & Kler, 2024).

Gerlero, & Kler. (2025). foamlib: A modern Python package for working with OpenFOAM. Journal of Open Source Software, 10(109), 7633.
https://doi.org/10.21105/joss.07633.

3

https://doi.org/10.21105/joss.07633


AsyncSlurmFoamCase class

AsyncSlurmFoamCase is a direct subclass of AsyncFoamCase that adds support for running
OpenFOAM cases on Slurm-based HPC clusters. When using this class, every call to run() by
default will run the case by submitting one or more Slurm jobs to the cluster. An optional
fallback keyword argument can be set to True to run the case locally if Slurm is not available,
allowing for seamless local and cluster-based execution.

OpenFOAM file manipulation
foamlib also provides an object-oriented interface for reading from and writing to OpenFOAM
files. The main classes for this purpose are FoamFile and FoamFieldFile, which are described
below.

FoamFile class

The FoamFile class offers high-level facilities for reading and writing OpenFOAM files, providing
an interface similar to that of a Python dict. FoamFile understands OpenFOAM’s common
input/output file formats, and is able to edit file contents in place without disrupting formatting
and comments. Most types of OpenFOAM “FoamFile” files are supported, meaning that
FoamFile can be used for both pre- and post-processing tasks.

OpenFOAM data types stored in files are mapped to built-in Python or NumPy (Harris et al.,
2020) types as much as possible, making it easy to work with OpenFOAM data in Python.
Table 1 shows the mapping of OpenFOAM data types to Python data types with foamlib.
Also, disambiguation between Python data types that may represent different OpenFOAM
data types (e.g., a scalar value and a uniform scalar field) is resolved by foamlib at the time
of writing by considering their contextual location within the file. The major exception to
this preference for built-ins is posed by the FoamFile.SubDict class, which is returned for
sub-dictionaries contained in FoamFiles, and allows for one-step modification of entries in
nested dictionary structures—as is commonly required when configuring OpenFOAM cases.

For clarity and additional efficiency, FoamFile objects can be used as context managers to
make multiple reads and writes to the same file while minimizing the number of filesystem and
parsing operations required.

Finally, we note that all OpenFOAM file formats are transparently supported by foamlib,
including ASCII, double- and single-precision binary formats, as well as compressed files.

Table 1: Mapping of OpenFOAM data types to Python data types with foamlib.

OpenFOAM
foamlib (accepts and

returns) foamlib (also accepts)
scalar float

vector/tensor numpy.ndarray |
list[float]

Sequence[float]

label int

switch bool

word str

string str (quoted)
multiple tokens tuple

list list Sequence

dictionary FoamFile.SubDict | dict Mapping

dictionary entry tuple

uniform field float | numpy.ndarray Sequence[float]

non-uniform
field

numpy.ndarray Sequence[float] |
Sequence[Sequence[float]]

Gerlero, & Kler. (2025). foamlib: A modern Python package for working with OpenFOAM. Journal of Open Source Software, 10(109), 7633.
https://doi.org/10.21105/joss.07633.

4

https://doi.org/10.21105/joss.07633


OpenFOAM
foamlib (accepts and

returns) foamlib (also accepts)
dimension set FoamFile.DimensionSet Sequence[float] | numpy.ndarray
dimensioned FoamFile.Dimensioned

FoamFieldFile class

FoamFieldFile is a convenience subclass of FoamFile that simply adds properties for accessing
data expected to be present in files that represent OpenFOAM fields, such as internal_field,
dimensions, and boundary_field.

Documentation and examples
Examples of foamlib usage are provided in the README file of the project. Additionally,
Sphinx-based documentation covering the entirety of the public API is available at foam-
lib.readthedocs.io.

Implementation details

Type hints
foamlib is fully typed using Python’s type hints, which makes it easier to understand and
use the library, as well as enabling automatic checks for type errors using tools like mypy
(Lehtosalo, 2024).

Parsing
foamlib contains a full parser for OpenFOAM files, which is able to understand and write to
the different types of files used by OpenFOAM. The parser is implemented using the pyparsing

(McGuire, 2024) library, which provides a powerful and flexible way to define parsing grammars.

A special case parser is internally used for non-uniform OpenFOAM fields, which can commonly
contain very large amounts of data in either ASCII or binary formats. The specialized parser
uses regular expressions to extract these data, which results in greatly improved parsing
performance—a more than 25x speedup versus PyFoam, as measured on a MacBook Air
(Apple Inc., Cupertino, Calif., USA) with an M1 processor and 8 GB of system RAM—,
while not sacrificing any of the generality of the parsing grammar. For extra efficiency and
convenience, these fields map to NumPy arrays in Python.

Asynchronous support
Methods of FoamCase and AsyncFoamCase have been carefully implemented in a way that
greatly avoids duplication of code between the synchronous and asynchronous versions by
factoring out the common logic into a helper intermediate class.

Continuous integration
Continuous integration of foamlib is performed automatically using GitHub Actions, and
includes:

• Testing with all supported Python versions (currently 3.7 to 3.13)
• Testing with multiple OpenFOAM distributions and versions (currently 9, 12, 2006 and

2406)
• Testing on a Slurm environment
• Code coverage tracking with Codecov

Gerlero, & Kler. (2025). foamlib: A modern Python package for working with OpenFOAM. Journal of Open Source Software, 10(109), 7633.
https://doi.org/10.21105/joss.07633.

5

https://github.com/gerlero/foamlib
https://foamlib.readthedocs.io
https://foamlib.readthedocs.io
https://doi.org/10.21105/joss.07633


• Type checking with mypy
• Code linting and formatting with Ruff
• Package building with uv

References
Augier, P., & Danaeifar, P. (2025). fluidsimfoam: Python framework for OpenFOAM. In

Heptapod repository. Heptapod. https://foss.heptapod.net/fluiddyn/fluidsimfoam

CyrilleBonamy, jchauchat, QuentinClemencot, Montellà, E. P., Höhn, P., mathieu7an, Al-
ixBernard, Gonçalves, G., MarieSkorlic, gnikit, & remichassagne. (2025). Fluiddyn/fluid-
foam: v0.2.9 (Version v0.2.9). Zenodo. https://doi.org/10.5281/zenodo.14893673

Gerlero, G. S. (2024). OpenFOAM.app: Native OpenFOAM for macOS. In GitHub repository.
GitHub. https://github.com/gerlero/openfoam-app

Gerlero, G. S., Guerenstein, Z. I., Franck, N., Berli, C. L. A., & Kler, P. A. (2024). Compre-
hensive numerical prototyping of paper-based microfluidic devices using open-source tools.
Talanta Open, 10, 100350. https://doi.org/10.1016/j.talo.2024.100350

Gerlero, G. S., & Kler, P. A. (2024). reagency: A simple, extensible reaction model for
OpenFOAM. In GitHub repository. GitHub. https://github.com/gerlero/reagency

Gerlero, G. S., Márquez Damián, S., & Kler, P. A. (2021). electroMicroTransport v2107:
Open-source toolbox for paper-based electromigrative separations. Computer Physics
Communications, 269, 108143. https://doi.org/10.1016/j.cpc.2021.108143

Gschaider, B. (2023). PyFoam: Python utilities for OpenFOAM. In PyPI project. Python
Package Index. https://pypi.org/project/PyFoam/

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., & others. (2020). Array programming
with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher, B., & Bruhin, F. (2004).
pytest 8.3. https://github.com/pytest-dev/pytest

Lehtosalo, J. (2024). mypy: Optional static typing for python. In GitHub repository. GitHub.
https://github.com/python/mypy

McGuire, P. (2024). pyparsing: Python library for creating PEG parsers. https://github.com/
pyparsing/pyparsing

Thiart, W. (2024). pytest-asyncio-cooperative: Run all your asynchronous tests cooperatively.
https://github.com/willemt/pytest-asyncio-cooperative

Xianghua, X. (2023). Ofpp: OpenFOAM Python Parser. In GitHub repository. GitHub.
https://github.com/xu-xianghua/ofpp

Gerlero, & Kler. (2025). foamlib: A modern Python package for working with OpenFOAM. Journal of Open Source Software, 10(109), 7633.
https://doi.org/10.21105/joss.07633.

6

https://foss.heptapod.net/fluiddyn/fluidsimfoam
https://doi.org/10.5281/zenodo.14893673
https://github.com/gerlero/openfoam-app
https://doi.org/10.1016/j.talo.2024.100350
https://github.com/gerlero/reagency
https://doi.org/10.1016/j.cpc.2021.108143
https://pypi.org/project/PyFoam/
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/pytest-dev/pytest
https://github.com/python/mypy
https://github.com/pyparsing/pyparsing
https://github.com/pyparsing/pyparsing
https://github.com/willemt/pytest-asyncio-cooperative
https://github.com/xu-xianghua/ofpp
https://doi.org/10.21105/joss.07633

	Summary
	Statement of need
	Features
	Requirements and installation
	Rationale for building a standalone library
	OpenFOAM distribution support

	OpenFOAM case manipulation
	FoamCaseBase class
	FoamCase class
	AsyncFoamCase class
	AsyncSlurmFoamCase class

	OpenFOAM file manipulation
	FoamFile class
	FoamFieldFile class

	Documentation and examples

	Implementation details
	Type hints
	Parsing
	Asynchronous support
	Continuous integration

	References

