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Summary
The impacts of climate change on natural ecosystems are the result of complex physical and
ecological processes operating and interacting at a variety of spatio-temporal scales, that can
be represented in process-based ecosystem models.

DVMDOSTEM is an advanced process-based terrestrial ecosystem model (TEM) designed to
study ecosystem responses to climate changes and disturbances. It has a particular focus on
permafrost regions (i.e. regions characterized by soils that stay partially frozen all year round
for at least two consecutive years), encompassing boreal, arctic, and alpine landscapes. The
model couples two previous versions of the Terrestrial Ecosystem Model (TEM) (McGuire et
al., 1992): DVMTEM that includes a dynamic vegetation module (DVM) (E. S. Euskirchen et
al., 2009), and DOSTEM that includes a dynamic organic soil module (DOS) (H. Genet et
al., 2013; Yi et al., 2010). DVMDOSTEM simulates processes at yearly and monthly scales, with
some physical processes operating at an even finer temporal resolution. Its versatility allows
for site-specific to regional simulations, making it valuable for predicting shifts in permafrost,
vegetation, and carbon (C) and nitrogen (N) dynamics. While DVMDOSTEM has been described
in the methods sections of many manuscripts, this paper is the first stand alone description of
DVMDOSTEM, independent of a particular scientific investigation.

Figure 1: Logo for DVMDOSTEM
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Statement of need
Arctic and boreal regions underlain by permafrost store nearly half of the world’s soil organic
C - approximately 1,440-1,600 Pg (Hugelius et al., 2014; Edward A. G. Schuur et al., 2022).
These regions are warming four times faster than the rest of the globe, driving widespread and
rapid permafrost thaw (Rantanen et al., 2022; Smith et al., 2022). As permafrost thaws, soil
organic C becomes available for decomposition and release as greenhouse gasses (GHGs) to the
atmosphere. Climate-driven permafrost thaw and the associated release of GHGs can influence
the global climate system, a phenomenon called the permafrost carbon-climate feedback or
PCCF (Koven et al., 2011; E. A. G. Schuur et al., 2015). The PCCF has been identified as
one of the largest sources of uncertainty in future climate projections and therefore needs to
be accurately represented in global earth system models (Schädel et al., 2024). DVMDOSTEM has
been developed with special emphasis on physical and biological processes driving permafrost
and carbon cycling in high latitude ecosystems. DVMDOSTEM is therefore well suited to assessing
and informing our understanding of the PCCF.

Model Design
DVMDOSTEM is designed to simulate the key biophysical and biogeochemical processes between
the soil, the vegetation and the atmosphere. The evolution and refinement of DVMDOSTEM

have been shaped by extensive research programs and applications both in permafrost and
non-permafrost regions (Briones et al., 2024; Eugénie S. Euskirchen et al., 2022; H. Genet et
al., 2013; Hélène Genet et al., 2018; Jafarov et al., 2013, 2025; Yi et al., 2009, 2010). The
model is spatially explicit and represents ecosystem response to climate and disturbances at
seasonal (i.e. monthly) to centennial scales.
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Figure 2: Overview of DVMDOSTEM soil and vegetation structure. On the left is the soil structure showing
the layers and different properties that are tracked (purple bubble: carbon (C), nitrogen (N), temperature
(T), volumetric water content (VWC), ice). Each of the layers with properties described above is also
categorized as organic (fibric or humic) or mineral. Additionally, the model simulates snow layers and
the removal of soil organic layers due to fire. On the right is the vegetation structure showing plant
functional types (PFTs) within a community type (CMT) and the associated pools and fluxes of C and
N. Each PFT is split into compartments (leaf, stem and root) which track their own C and N content
and associated fluxes. The fluxes are represented with red text while the pools are black. In addition,
there is competition among the PFTs for light, water, and available N, shown with the purple arrow in
the top center.

The snow and soil columns are split into a dynamic number of layers to represent their impact
on thermal and hydrological dynamics and the consequences for soil C and N dynamics.
Vegetation composition is modeled using community types (CMTs), each of which consists
of multiple plant functional types (PFTs - groups of species sharing similar ecological traits).
This structure allows the model to represent the effect of competition for light, water and
nutrients on vegetation composition (E. S. Euskirchen et al., 2009), as well as the role of
nutrient limitation on permafrost ecosystem dynamics, with coupling between C and N cycles
(E. S. Euskirchen et al., 2009; McGuire et al., 1992). Finally, the model represents the effects
of wildfire in order to evaluate the role of climate-driven fire intensification on ecosystem
structure and function (H. Genet et al., 2013; Yi et al., 2010). The structure of DVMDOSTEM is
represented visually in Figure 2.

State of the Field
In the field of ecosystem models, several prominent models such as CLM5 (Lawrence et al.,
2019), ELM-FATES (Fisher et al., 2015), LANDIS (Scheller et al., 2007), and iLand (Seidl et
al., 2012) have been developed to simulate ecological processes at various scales, resolutions
and ecotypes. Like DVMDOSTEM, ELM-FATES, and early versions of CLM, are “offline” land
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models that do not include feedback with atmospheric or oceanic models, focusing instead on
land surface processes. LANDIS and iLand emphasize forest dynamics with some interaction
between grid cells, while DVMDOSTEM does not model interaction between grid cells. While
DVMDOSTEM contains detailed representations of vegetation - multiple Plant Functional Types
(PFTs) and individual compartments within PFTs - it also has the concept of community
types (collections of PFTs and soil properties) and is designed to run at the landscape scale
by representing more than a single stand of trees or a single forest type. DVMDOSTEM is unique
in its detailed representation of high latitude processes, particularly the dynamic organic soils
in regions with frozen ground coupled with dynamic vegetation and high latitude specific
parameterizations. This focus allows DVMDOSTEM to simulate the complex interactions between
soil, vegetation, and climate in permafrost ecosystems, providing valuable insights into the
PCCF. For a more detailed assessment and comparison of high latitude vegetation modeling,
see (Heffernan et al., 2024).
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