DOI: 10.21105/joss.07668

Software
= Review 0
= Repository 7
= Archive 7

Editor: George K. Thiruvathukal
(&4
Reviewers:

= @martibosch

= Qjofmi

Submitted: 30 December 2024
Published: 28 March 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

The Journal of Open Source Software

Mesa 3: Agent-based modeling with Python in 2025

Ewout ter Hoeven ©®1, Jan Kwakkel ©!, Vincent Hess ©®2, Thomas Pike @ 3,

Boyu Wang ©@*, rht ®°, and Jackie Kazil ®3

1 Delft University of Technology (Faculty of Technology, Policy and Management), the Netherlands 2
Independent Researcher, Germany 3 George Mason University (Department of Computational Social
Science), United States 4 University at Buffalo (Department of Geography), United States 5
Independent Researcher

Summary

Mesa is an open-source Python framework for agent-based modeling (ABM) that enables
researchers to create, analyze, and visualize agent-based simulations. Mesa provides a compre-
hensive set of tools and abstractions for modeling complex systems, with capabilities spanning
from basic agent management to sophisticated representation of spaces where agents interact.
First released in 2014 and published in Masad et al. (2015) (with updates published in Kazil
et al. (2020)), this paper highlights advancements and presents Mesa in its current version
(3.1.5) as of 2025.

Statement of need

Agent-based models (ABMs) are composed of autonomous, heterogeneous agents interacting
locally with other agents. These interactions give rise to emergent phenomena. The aggregate
dynamics of a system under study emerge from these local interactions (Joshua M. Epstein, 1999;
Joshua M. Epstein & Axtell, 1996). This type of modeling quickly grew more sophisticated,
requiring frameworks to execute them. This led to the establishment of NetLogo in 1999 and
MASON in 2003.

NetLogo is the most widely adopted tool and the first to make ABMs accessible, but it only
allows for small models. MASON is Java-based, allowing for advancements in scalability and
speed above NetlLogo, but MASON is difficult for non-programmers. Both of these tools did
not serve models over HTTP, which allows for hosting models on the web, nor did they take
advantage of the rich scientific Python ecosystem. In response to these needs, Mesa was
created with the goal of accessibility — targeting both beginner and advanced programmers.
The major release of Mesa 3 provides advanced usability and stabilized functionality. These
features include enhanced management of agents, data collection advancements, an improved
visualization framework, and making it easier for researchers to create and analyze complex
simulations.

Applications

Since its creation in 2014, Mesa has been applied to modeling a wide range of phenomena
from economics and sociology to ecology and epidemiology and has been cited in more than
500 papers and 800 authors. Mesa has been applied across diverse domains, including:

= Infrastructure resilience and post-disaster recovery planning (Sun & Zhang, 2020)
= Market modeling, including renewable energy auctions and consumer behavior (Anatolitis
& Welisch, 2017)

ter Hoeven et al. (2025). Mesa 3: Agent-based modeling with Python in 2025. Journal of Open Source Software, 10(107), 7668. https: 1

//doi.org/10.21105/joss.07668.

https://orcid.org/0009-0002-0805-3425
https://orcid.org/0000-0001-9447-2954
https://orcid.org/0000-0002-9242-8500
https://orcid.org/0000-0003-1576-0283
https://orcid.org/0000-0001-9879-2138
https://orcid.org/0009-0002-6902-111X
https://orcid.org/0000-0002-8300-7384
https://doi.org/10.21105/joss.07668
https://github.com/openjournals/joss-reviews/issues/7668
https://github.com/projectmesa/mesa
https://doi.org/10.5281/zenodo.15090710
https://gkt.cs.luc.edu
https://orcid.org/0000-0002-0452-5571
https://github.com/martibosch
https://github.com/jofmi
https://creativecommons.org/licenses/by/4.0/
https://ccl.northwestern.edu/netlogo/
https://cs.gmu.edu/~eclab/projects/mason/
https://doi.org/10.21105/joss.07668
https://doi.org/10.21105/joss.07668

The Journal of Open Source Software

= Transportation optimization, such as combined truck-drone delivery routing (Leon-Blanco
et al., 2022)

= Recommender systems analysis examining consumer-business value tradeoffs over time
(Ghanem et al., 2022)

= Climate adaptation modeling examining household-level behavioral responses to environ-
mental shocks (Taberna et al., 2023)

= SEIR modeling of Sars-CoV-2 (Covid-19) (Pham et al., 2021)

= Management of edge computing resources (Souza et al., 2023)

These applications showcase Mesa's versatility in modeling complex systems with autonomous
interacting agents, whether representing individual consumers, infrastructure components,
buildings, or vehicles.

The framework is particularly suited for:

= Models with heterogeneous agent populations

= Systems requiring sophisticated spatial interactions
= Interactive exploration of parameter spaces

= Teaching and learning agent-based modeling

Core capabilities

Mesa is a Python-based framework for ABM that provides a comprehensive set of tools for
creating, running, and analyzing ABMs. Mesa integrates with the wider scientific Python
ecosystem with libraries such as NumPy, pandas, Matplotlib, NetworkX, and more. The backend
of the framework is written in Python, while the front-end end uses a Python implementation
of React. The modular architecture is comprised of three main components:

1. Core ABM components (i.e., agents, spaces, agent activation, control over random
numbers) to build models

2. Data collection and support for model experimentation

3. Visualization systems

This decoupled design allows selective use of components while enabling extension and
customization.

Mesa follows a two-track development model where new features are first released as experi-
mental before being stabilized. Experimental features are clearly marked as such and may have
their APIs change between releases. They are graduated to stable status once their APIs and
implementations are proven through community testing and feedback. Stable features follow
semantic versioning.

Core ABM components
Model

The central class in Mesa is the Model. To build a model, the user instantiates a model
object, creates a space within it, and populates the space with agent instances. Since ABMs
are typically stochastic simulations, Mesa includes a random number generator and, for
reproducibility purposes, allows the user to pass a seed.

class SimpleModel(mesa.Model):
def __init__(self, n_agents=10, seed=42):

super().__init__(seed=seed)

SimpleAgent.create_agents(self, n_agents, energy=100)

ter Hoeven et al. (2025). Mesa 3: Agent-based modeling with Python in 2025. Journal of Open Source Software, 10(107), 7668. https: 2

//doi.org/10.21105/joss.07668.

https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://networkx.org/
https://doi.org/10.21105/joss.07668
https://doi.org/10.21105/joss.07668

The Journal of Open Source Software

def step(self):
self.agents.shuffle_do("step")

Agents

Central to ABMs are the autonomous heterogeneous agents. Mesa provides a variety of base
agent classes which the user can subclass. In its most basic implementation, an agent subclass
specifies the __init__ and step method. Any subclass of the basic mesa agent subclass
registers itself with the specified model instance, and via agent.remove it will remove itself
from the model. It is strongly encouraged to rely on remove, and even extend it if needed to
ensure agents are fully removed from the simulation. Sometimes an agent subclass is referred
to as a “type"” of agent.

class SimpleAgent(mesa.Agent):
def __init__(self, model, energy):
super().__init__(model)

self.energy = energy

def step(self):
self.energy -= 1
if self.energy <= 0:
self.remove()

Agent management

One significant advancement of Mesa 3 is expanded functionality around agent management.
The new AgentSet class provides methods that allow users to filter, group, and analyze agents,
making it easier to express complex model logic.

When agents are created, they automatically register with the model via model. register_agent(self).
This registration automatically adds the agent to an AgentSet that's accessible through the
model’s agents property. Additional AgentSet instances for each agent type are maintained

and available through model.agents_by_type. These collections are automatically updated

when agents are added or removed from the model.

wealthy = model.agents.select(lambda a: a.wealth > 1000)
avg_wealth = wealthy.agg("wealth", func=np.mean)

grouped = model.agents.groupby("species")
for species, agents in grouped:
agents.shuffle_do("reproduce")

Spaces

Mesa 3 provides both discrete (cell-based) and continuous space implementations. In discrete
spaces, an agent occupies a cell. Mesa implements discrete spaces using a doubly-linked
structure where each cell maintains connections to its neighbors. The framework includes
several discrete space variants with a consistent API:

= Grid-based: OrthogonalMooreGrid, OrthogonalVonNeumanGrid, and HexGrid

= Network-based: Network for graph-based topologies

= Voronoi-based: VoronoiMesh for irregular tessellations (where space is divided into cells
based on proximity to seed points)

Example grid creation:

grid = OrthogonalVonNeumannGrid((width, height), torus=False, random=model.random)

ter Hoeven et al. (2025). Mesa 3: Agent-based modeling with Python in 2025. Journal of Open Source Software, 10(107), 7668. https: 3
//doi.org/10.21105/joss.07668.

https://mesa.readthedocs.io/latest/apis/agent.html#mesa.agent.AgentSet
https://doi.org/10.21105/joss.07668
https://doi.org/10.21105/joss.07668

The Journal of Open Source Software

In Mesa 3, specialized agent classes for spatial interactions in discrete spaces were added:

= FixedAgent: Is assigned to a cell, can access this cell, but cannot move to another cell.
= CellAgent: Can move between cells
= Grid2DMovingAgent: Extends CellAgent with directional movement methods

All discrete spaces support PropertylLayers - efficient numpy-based arrays for storing cell-level
properties. This newly added feature allows for agents to interact with spatial properties of
the cell more easily:

grid.create_property_layer("elevation", default_value=10)
high_ground = grid.elevation.select_cells(lambda x: x > 50)

For models where agents need to move continuously through space rather than between discrete
locations, ContinuousSpace allows agents to occupy any coordinate within defined boundaries:

space = ContinuousSpace(x_max, y_max, torus=True)
space.move_agent(agent, (new_x, new_y))

Time advancement

Mesa supports two primary approaches to advancing time in simulations: incremental-time
progression (tick-based) and next-event time progression.

Typically, ABMs represent time in discrete steps (often called “ticks"). For each tick, the
model’s step method is called, and agents are activated to take their designated actions. The
most frequently implemented approach is shown below, which runs a model for 100 ticks:

model = Model(seed=42)

for _ in range(100):
model.step()

Before Mesa 3, all agents were activated within the step method of the model using predefined
schedulers. However, the newly added AgentSet class provides a more flexible way to activate
agents. These changes include the removal of the Scheduler APl and its previously available
fixed patterns.

model.agents.do("step")

model.agents.shuffle_do("step")

for stage in ["move", "eat", "reproduce"]:
model.agents.do(stage)

for klass in model.agent_types:
model.agents_by_type[klass].do("step")

Mesa also includes experimental support for next-event time progression through the
DiscreteEventSimulator. This experimental feature allows scheduling events at arbitrary
timestamps rather than fixed ticks, enabling both pure discrete event-based models and
hybrid approaches. The latter hybrid approach combines traditional ABM time steps with the
flexibility and potential performance benefits of event scheduling. While currently experimental,
this capability is being actively developed and tested:

simulator = DiscreteEventSimulator()
model = Model(seed=42, simulator=simulator)
simulator.schedule_event_relative(some_function, 3.1415)

ter Hoeven et al. (2025). Mesa 3: Agent-based modeling with Python in 2025. Journal of Open Source Software, 10(107), 7668. https: 4

//doi.org/10.21105/joss.07668.

https://doi.org/10.21105/joss.07668
https://doi.org/10.21105/joss.07668

The Journal of Open Source Software

Hybrid incremental time and next-event time progression (experimental)
model = Model(seed=42, simulator=ABMSimulator())
model.simulator.schedule_event_next_tick(some_function)

Visualization

Mesa'’s visualization module, SolaraViz, allows for interactive browser-based model exploration.
Advancements with Mesa 3 update the visualization from harder-to-maintain custom code to
Solara, a standardized library. Usage of the visualization module can be seen below:

visualization = SolaraViz(
model=model,
components=[
make_space_component(wolf_sheep_portrayal),
make_plot_component(["Wolves", "Sheep", "Grass"]),
lambda m: f"Step {m.steps}: {len(m.agents)} agents"

Grid visualization
Population plot

Text display

1,

model_params=model_params

)

= Wolf Sheep

Controls

RESET

o =

Model Parameters
0

grass regrowth enabled?

true v

0 10 20 30 40 50 60 70 80
step

Grass Regrowth Time ———@
Initial Sheep Population —@
Sheep Reproduction Rate @
Initial Wolf Population @

Wolf Reproduction Rate @

Wolf Gain From Food Rate ——@
This website runs on Solara

Figure 1: A screenshot of the WolfSheep Model in Mesa

Key features include:

= |nteractive model controls

= Real-time data visualization

= Customizable agent and space portrayal

= Support for multiple visualization types, including grids, networks, and charts

Experimentation and analysis
Data collection

Mesa’s DataCollector enables systematic data gathering during simulations:

collector = DataCollector(
model_reporters={"population": lambda m: len(m.agents)},
agent_reporters={"wealth": "wealth"},

ter Hoeven et al. (2025). Mesa 3: Agent-based modeling with Python in 2025. Journal of Open Source Software, 10(107), 7668. https: b

//doi.org/10.21105/joss.07668.

https://mesa.readthedocs.io/latest/tutorials/visualization_tutorial.html
https://solara.dev/
https://doi.org/10.21105/joss.07668
https://doi.org/10.21105/joss.07668

The Journal of Open Source Software

agenttype_reporters={
Predator: {"kills": "kills_count"},
Prey: {"distance_fled": "flight_distance"}

)
The collected data integrates seamlessly with pandas for analysis:

model_data = collector.get_model_vars_dataframe()
agent_data = collector.get_agent_vars_dataframe()

Parameter sweeps
Mesa supports systematic parameter exploration:

parameters = {
"num_agents": range(10, 100, 10),
"growth_rate": [0.1, 0.2, 0.3]

}

results = mesa.batch_run(MyModel, parameters, iterations=5, max_steps=10)

Community and ecosystem

Mesa has grown into a complete ecosystem with extensions including:

= Mesa-Geo for geospatial modeling (Wang et al., 2022)
= Mesa-Frames for high-performance simulations
= A rich collection of community-contributed extensions, example models, and tutorials

Conclusions

Mesa 3 introduces significant advancements to the Python ABM framework, enhancing the
core toolkit with greater control, interactivity, and speed for researchers. These notable
improvements, paired with its foundational integration with the scientific Python ecosystem,
modular architecture, and active community, make it an indispensable tool for researchers
across disciplines working in Python who want to create and analyze agent-based models.

Acknowledgements

The advancements leading to Mesa 3 were developed by seven maintainers (the authors) and
an active community with over 140 contributors. We would especially like to thank David
Masad for his foundational work on Mesa.

References

Anatolitis, V., & Welisch, M. (2017). Putting renewable energy auctions into action—an agent-
based model of onshore wind power auctions in Germany. Energy Policy, 110, 394—402.
https://doi.org/10.1016/j.enpol.2017.08.024

Epstein, Joshua M. (1999). Agent-based computational models and generative social science.
Complexity, 4(5), 41-60.

Epstein, Joshua M., & Axtell, R. (1996). Growing artificial societies: Social science from the
bottom up. Brookings Institution Press; MIT Press. ISBN: 9780262550253

ter Hoeven et al. (2025). Mesa 3: Agent-based modeling with Python in 2025. Journal of Open Source Software, 10(107), 7668. https: 6

//doi.org/10.21105 /joss.07668.

https://mesa.readthedocs.io/latest/mesa_extension.html
https://github.com/projectmesa/mesa-geo
https://github.com/projectmesa/mesa-frames
https://github.com/projectmesa/mesa-examples
https://github.com/projectmesa/mesa/graphs/contributors
https://github.com/dmasad
https://github.com/dmasad
https://doi.org/10.1016/j.enpol.2017.08.024
https://doi.org/10.21105/joss.07668
https://doi.org/10.21105/joss.07668

The Journal of Open Source Software

Ghanem, N., Leitner, S., & Jannach, D. (2022). Balancing consumer and business value of
recommender systems: A simulation-based analysis. Electronic Commerce Research and
Applications, 55, 101195. https://doi.org/10.1016/j.elerap.2022.101195

Kazil, J., Masad, D., & Crooks, A. (2020). Utilizing Python for agent-based modeling: The
Mesa framework. Social, Cultural, and Behavioral Modeling: 13th International Conference,
SBP-BRiMS 2020, 308-317. https://doi.org/10.1007/978-3-030-61255-9_30

Leon-Blanco, J. M., Gonzalez-R, P. L., Andrade-Pineda, J. L., Canca, D., & Calle, M. (2022).
A multi-agent approach to the truck multi-drone routing problem. Expert Systems with
Applications, 195, 116604. https://doi.org/10.1016/j.eswa.2022.116604

Masad, D., Kazil, J. L., & others. (2015). Mesa: An agent-based modeling framework. SciPy,
51-58. https://doi.org/10.25080/Majora-7b98e3ed-009

Pham, T. M., Tahir, H., Wijgert, J. H. H. M. van de, Van der Roest, B. R., Ellerbroek, P.,
Bonten, M. J. M., Bootsma, M. C. J., & Kretzschmar, M. E. (2021). Interventions to
control nosocomial transmission of SARS-CoV-2: A modelling study. BMC Medicine, 19,
211. https://doi.org/10.1186/s12916-021-02060-y

Souza, P. S., Ferreto, T., & Calheiros, R. N. (2023). EdgeSimPy: Python-based modeling and
simulation of edge computing resource management policies. Future Generation Computer
Systems, 148, 446—-459. https://doi.org/10.1016/j.future.2023.06.013

Sun, J., & Zhang, Z. (2020). A post-disaster resource allocation framework for improving
resilience of interdependent infrastructure networks. Transportation Research Part D:
Transport and Environment, 85, 102455. https://doi.org/10.1016/j.trd.2020.102455

Taberna, A., Filatova, T., Hadjimichael, A., & Noll, B. (2023). Uncertainty in boundedly
rational household adaptation to environmental shocks. Proceedings of the National
Academy of Sciences, 120(44), €2215675120. https://doi.org/10.1073/pnas.2215675120

Wang, B., Hess, V., & Crooks, A. (2022). Mesa-geo: A GIS extension for the Mesa agent-based
modeling framework in Python. Proceedings of the 5th ACM SIGSPATIAL International
Workshop on GeoSpatial Simulation, 1-10. https://doi.org/10.1145/3557989.3566157

ter Hoeven et al. (2025). Mesa 3: Agent-based modeling with Python in 2025. Journal of Open Source Software, 10(107), 7668. https: 7

//doi.org/10.21105 /joss.07668.

https://doi.org/10.1016/j.elerap.2022.101195
https://doi.org/10.1007/978-3-030-61255-9_30
https://doi.org/10.1016/j.eswa.2022.116604
https://doi.org/10.25080/Majora-7b98e3ed-009
https://doi.org/10.1186/s12916-021-02060-y
https://doi.org/10.1016/j.future.2023.06.013
https://doi.org/10.1016/j.trd.2020.102455
https://doi.org/10.1073/pnas.2215675120
https://doi.org/10.1145/3557989.3566157
https://doi.org/10.21105/joss.07668
https://doi.org/10.21105/joss.07668

	Summary
	Statement of need
	Applications
	Core capabilities
	Core ABM components
	Model
	Agents
	Agent management
	Spaces
	Time advancement

	Visualization
	Experimentation and analysis
	Data collection
	Parameter sweeps

	Community and ecosystem
	Conclusions
	Acknowledgements
	References

