
Minterpy: multivariate polynomial interpolation in
Python
Damar Wicaksono 1, Uwe Hernandez Acosta 1, Sachin Krishnan Thekke
Veettil 3, Jannik Kissinger 3,4, and Michael Hecht 1,2

1 Center for Advanced Systems Understanding (CASUS) - Helmholtz-Zentrum Dresden-Rossendorf
(HZDR), Germany 2 University of Wrocław, Poland 3 Max Planck Institute of Molecular Cell Biology
and Genetics, Dresden, Germany 4 Technische Universität Dresden, Germany

DOI: 10.21105/joss.07702

Software
• Review
• Repository
• Archive

Editor: Juanjo Bazán
Reviewers:

• @sixpearls
• @kenohori

Submitted: 30 December 2024
Published: 01 May 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Interpolation is essential in various computational tasks, including function approximation,
curve fitting, numerical integration, differential geometry, spectral methods, optimization, and
uncertainty quantification.

Minterpy is an open-source Python package designed for multivariate polynomial interpolation.
It provides stable and accurate interpolating polynomials for approximating a wide range of
functions. Key features include:

• Polynomial interpolation on properly selected nodes and regression on arbitrary nodes.
• Differentiation and integration operations on the polynomials.
• Addition, subtraction, and multiplication operations on the polynomials.

Minterpy’s long-term vision is to provide researchers and engineers a software solution that
mitigates the curse of dimensionality commonly associated with interpolation tasks.

Statement of need
As a means of approximating functions, global polynomials—where a single polynomial is
defined over the entire domain—offer several advantages. For sufficiently smooth functions,
global polynomials can achieve high accuracy with a smaller number of data points (sampled
over the entire domain) compared to local piecewise polynomials. Additionally, their relatively
simple structure facilitates many common numerical operations. These operations include
differentiation, integration, addition, subtraction, and multiplication (Trefethen, 2019).

The Stone-Weierstrass theorem establishes that any continuous function on a bounded domain
in multiple dimensions can be approximated uniformly to arbitrary precision by multivariate
global polynomials (de Branges, 1959). However, the theorem does not specify a concrete
method for constructing such approximating polynomials. Various techniques can be employed
to build approximating polynomials, such as least square approximations. Minterpy focuses on
constructing approximating global polynomials using one of the earliest and most established
methods: interpolation (Goldstine, 1977).

Polynomial interpolation is based on the principle that, in one dimension, there exists a unique
polynomial 𝑄𝑓,𝑛 of degree 𝑛 that interpolates a function 𝑓 ∶ Ω → ℝ in a bounded domain Ω
with 𝑛 + 1 distinct (unisolvent1) interpolation nodes (or points) 𝑃𝑛 such that

𝑄𝑓,𝑛(𝑝𝑖) = 𝑓(𝑝𝑖), ∀𝑝𝑖 ∈ 𝑃𝑛 ⊂ Ω, 𝑖 = 0,… , 𝑛. (1)
1Unisolvent here means that the interpolating polynomial can be uniquely determined by the given interpolation

nodes. In one dimension, this implies that the nodes are of distinct values.

Wicaksono et al. (2025). Minterpy: multivariate polynomial interpolation in Python. Journal of Open Source Software, 10(109), 7702.
https://doi.org/10.21105/joss.07702.

1

https://orcid.org/0000-0001-8587-7730
https://orcid.org/0000-0002-6182-1481
https://orcid.org/0000-0003-4852-2839
https://orcid.org/0000-0002-1819-6975
https://orcid.org/0000-0001-9214-8253
https://doi.org/10.21105/joss.07702
https://github.com/openjournals/joss-reviews/issues/7702
https://github.com/minterpy-project/minterpy
https://doi.org/10.14278/rodare.3725
https://juanjobazan.com
https://orcid.org/0000-0001-7699-3983
https://github.com/sixpearls
https://github.com/kenohori
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07702

Polynomial interpolation has its roots in the works of Newton, Euler, Lagrange, and others
(Meijering, 2002), and its significance in mathematics and computing is well-established (Cools,
2002; Xiu, 2009).

Despite their aforementioned advantages as global polynomials, global interpolating polynomials
have a controversial reputation due to several misconceptions (Trefethen, 2011, 2016, 2017a):

• They are often thought to be prone to Runge’s phenomenon, whereby increasing the
degree of interpolating polynomials worsens the approximation quality.

• Their evaluation is frequently believed to be numerically unstable and susceptible to
round-off errors.

• Their extension to multiple dimensions is seen as severely limited by the curse of
dimensionality, particularly when using tensor product constructions, which causes the
required number of interpolation nodes (i.e., data points) to grow exponentially with the
number of spatial dimensions.

• They are said to generally fail to converge to the approximated function as the degree
increases, with Faber’s theorem often cited to justify this assertion. This view has
contributed to a more generally pessimistic outlook on the use of interpolating polynomials
for function approximation.

Minterpy addresses these issues by:

• Constructing multivariate interpolating polynomials using appropriate interpolation nodes
(e.g., Chebyshev-Lobatto nodes) to help mitigate Runge’s phenomenon2;

• Representing the interpolating polynomials in the Newton basis, combined with Leja
ordering of the interpolation nodes to ensure stable evaluation (Breuß et al., 2018;
Reichel, 1990; Tal-Ezer, 1991);

• Using a multi-index set to represent the multivariate polynomials, which can be tailored
to mitigate the curse of dimensionality while preserving the approximation power of the
interpolating polynomials (more on this in the next section).

While Faber’s theorem shows that no interpolating polynomial can converge for all continuous
functions, it has been demonstrated that if the function is reasonably smooth, the interpolating
polynomials do converge at high algebraic rates for common regular (Lipschitz continuous3)
functions and at geometric rates for analytic functions (Trefethen, 2017b).

Minterpy shares similar objectives and functionality with Chebfun (Driscoll et al., 2014), a
popular MATLAB package4 designed for numerical computations using interpolating poly-
nomials, specifically Chebyshev polynomials. Chebfun provides features such as root finding,
differentiation, and integration for function approximation in up to three dimensions. In
contrast, Minterpy supports higher dimensions but with fewer features.

Several Python packages, such as Chaospy (Feinberg & Langtangen, 2015), equadratures
(Seshadri & Parks, 2017), PyGPC (Weise et al., 2020), PyThia (Hegemann & Heidenreich,
2023), and UncertainSci (Tate et al., 2023), provide polynomial-based function approximations,
primarily for uncertainty quantification (UQ) using generalized polynomial chaos expansion
(Xiu & Karniadakis, 2002). These tools frame problems as UQ tasks, where inputs are modeled
probabilistically. With few exceptions (notably Chaospy), the resulting polynomials are primarily
used for function approximations, accompanied by additional post-processing utilities tailored
to UQ tasks (e.g., uncertainty propagation, sensitivity analysis). In contrast, Minterpy offers a
simpler, UQ-free approach to function approximation using interpolating polynomials, with
fewer barriers to entry, and includes several mathematical operations on the polynomials.

Several other Python packages construct polynomial approximations from data. SciPy (Virtanen
2Runge’s phenomenon arises when using equispaced interpolation nodes, causing large oscillations, especially

near the interval’s endpoints. Adding more points does not resolve these oscillations.
3that is, |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿|𝑥 − 𝑦| for some constant 𝐿 and for all 𝑥, 𝑦 ∈ Ω where Ω is a bounded domain.
4Packages in other languages based on or similar to Chebfun include ApproxFun (Olver et al., 2023) (Julia),

and ChebPy (Richardson & others, 2024) and pychebfun (Swierczewski & Verdier, 2024) (Python).

Wicaksono et al. (2025). Minterpy: multivariate polynomial interpolation in Python. Journal of Open Source Software, 10(109), 7702.
https://doi.org/10.21105/joss.07702.

2

https://doi.org/10.21105/joss.07702

et al., 2020) provides multivariate interpolation methods (e.g., linear, nearest, pchip5) for
rectilinear grids. ndsplines (Margolis & Lyons, 2019) efficiently implements tensor-product
multivariate B-splines that can be differentiated and anti-differentiated. Unlike Minterpy,
these tools rely on piecewise local polynomials and are tailored for input/output data pairs.
Familiar and widely used, piecewise polynomials—especially splines—remain established tools
for polynomial interpolation tasks.

In summary, while not a universal tool for all function approximation problems, Minterpy offers
a robust solution for approximating a wide range of multidimensional Lipschitz continuous
functions using accurate and stable polynomials. Once obtained, these polynomials can be
readily manipulated using standard arithmetic operations, such as addition and multiplication,
as well as calculus operations, like differentiation and integration. The significance of this
capability extends beyond function approximation, as many numerical methods (e.g., root
finding, optimization) can be boiled down to these fundamental operations on functions. By
leveraging Minterpy’s polynomials, users can conveniently carry out symbolic-like computations
that would normally require direct manipulation of function values.

Package overview
Consider an 𝑚-dimensional function 𝑓 ∶ Ω ⊂ ℝ𝑚 → ℝ, defined on a hypercube. Minterpy
interpolates the function using a polynomial expansion in the Lagrange basis

𝑓(𝑥) ≈ 𝑄(𝑥) = ∑
𝛼∈𝐴

𝑓(𝑝𝛼) 𝐿𝛼(𝑥), (2)

where 𝐴 ⊆ ℕ𝑚, 𝐿𝛼, and 𝑝𝛼 are the multi-index set, the Lagrange basis polynomial, and the
unisolvent node that correspond to the index element 𝛼, respectively. The set {𝑝𝛼}𝛼∈𝐴 forms
the interpolation grid.

Each basis polynomial satisfies the Kronecker delta condition

𝐿𝛼(𝑝𝛽) = 𝛿𝛼,𝛽, 𝑝𝛽 ∈ {𝑝𝛼}𝛼∈𝐴, 𝛼 ∈ 𝐴,

ensuring 𝑄(𝑥) in Equation 2 is an interpolating polynomial.

The multi-index set 𝐴 determines polynomial coefficients, unisolvent nodes, and function
evaluations. In Minterpy, the default is a downward-closed set 𝐴𝑚,𝑛,𝑝 with spatial dimension
𝑚 ∈ ℕ>0, polynomial degree 𝑛 ∈ ℕ, and ℓ𝑝-degree 𝑝 ∈ ℝ>0. The set is defined as

𝐴𝑚,𝑛,𝑝 = {𝛼 ∈ ℕ𝑚 ∶ ‖𝛼‖𝑝 = (𝛼𝑝
1 +⋯+ 𝛼𝑝

𝑚)1/𝑝 ≤ 𝑛}.

Here, typical choices for 𝑝 are 1.0, 2.0, and ∞, representing the total, Euclidean, and
maximum degree (tensor-product), respectively. These values for 𝑝 correspond to polynomial,
sub-exponential, and exponential growth of the set size as a function of the spatial dimension.
Consequently, the maximum degree set faces a severe curse of dimensionality due to the rapid
growth of the set size.

It has been shown that the Euclidean degree 𝑝 = 2.0 offers the best compromise for isotropic
functions (where each variable has the same importance)6, as its convergence rate matches that
of 𝑝 = ∞ with respect to the polynomial degree, yet with a significantly smaller multi-index set.
In contrast, while the size of the multi-index set for 𝑝 = 2.0 is larger than that for 𝑝 = 1.0, the
gain in accuracy more than compensates for the increased cost (Hecht et al., 2025; Trefethen,
2017b).

5Piecewise cubic Hermite interpolating polynomial.
6Incorporating anisotropy (e.g., via an adaptive scheme) enables sparser polynomials. While Minterpy does

not yet support adaptivity, users can define custom downward-closed multi-index sets for interpolation.

Wicaksono et al. (2025). Minterpy: multivariate polynomial interpolation in Python. Journal of Open Source Software, 10(109), 7702.
https://doi.org/10.21105/joss.07702.

3

https://doi.org/10.21105/joss.07702

Deriving multidimensional Lagrange bases for non-tensorial grids is challenging. Minterpy uses
the Newton basis for efficient evaluation and differentiation

𝑄(𝑥) = ∑
𝛼∈𝐴

𝑐𝛼 𝑁𝛼(𝑥), 𝑁𝛼(𝑥) =
𝑚
∏
𝑖=1

𝛼𝑖−1

∏
𝑗=0

(𝑥𝑖 − 𝑞𝑗), 𝑞𝑗 ∈ 𝑃𝑖,

where 𝑐𝛼 and 𝑁𝛼 are the Newton coefficient and Newton polynomial that correspond to
the index element 𝛼, respectively; 𝑃𝑖 is a set of interpolation nodes in each dimension.
Using Leja-ordered Chebyshev-Lobatto interpolation nodes by default, Newton basis offers
numerical stability (Breuß et al., 2018; Reichel, 1990; Tal-Ezer, 1991). Computing Newton
coefficients, based on the Lagrange coefficients and interpolation grid, via a multidimensional
divided-difference scheme (DDS) is a key step in Minterpy (Hecht et al., 2025).

Minterpy also supports other polynomial bases, including the canonical (monomial) and
Chebyshev (first kind) bases, along with transformations between them.

Minterpy polynomials for function approximation
Minterpy prioritizes stable and accurate function approximation through polynomial interpola-
tions, even for high-degree polynomials. Consider, the Runge function:

𝑓(𝑥) = 1
1 + ‖𝑥‖2 , 𝑥 ∈ [−1, 1]𝑚,

commonly used to demonstrate Runge’s phenomenon, a pitfall in high-degree interpolation
with equispaced points.

Figure 1: The comparison of Minterpy interpolating polynomials, approximating the Runge function in
dimension 𝑚 = 3, 4, with alternative methods from designated packages.

Figure 1 shows the accuracy of Minterpy interpolating polynomials for three different ℓ𝑝-
degrees in dimension 𝑚 = 3, 47. The horizontal axis shows the number of coefficients (and

7Details of the numerical experiments can be found in (Wicaksono et al., 2025).

Wicaksono et al. (2025). Minterpy: multivariate polynomial interpolation in Python. Journal of Open Source Software, 10(109), 7702.
https://doi.org/10.21105/joss.07702.

4

https://doi.org/10.21105/joss.07702

function evaluations), directly linked to the polynomial degree, to enable comparisons with
other methods. The infinity norm of the difference between the function and its approximation,

‖𝑓 − 𝑄𝑓‖∞ = max
𝑥∈[−1,1]𝑚

|𝑓(𝑥) − 𝑄𝑓(𝑥)|

is measured at 1′000′000 random points.

The figure compares data-driven methods (SciPy v1.13.1, ndsplines v0.2.0post0) and pseudo-
spectral methods (Chaospy v4.3.18, Equadratures v10). In the data-driven methods, approxi-
mation complexity is fixed as data increases. While ndsplines supports higher degrees, splines
above degree 5 are rare in practice. The pseudo-spectral methods approximate functions using
Legendre polynomial expansions on tensor-product grids, with coefficients computed via numeri-
cal integration. The coefficient count matches Minterpy interpolating polynomials with 𝑝 = ∞.
Equadratures, whose results are comparable to Minterpy, (softly) limits multi-index cardinality
to 5 × 104 due to computational expense, while Chaospy struggles with tensor-product grids8.

The results show that Minterpy polynomials provide highly accurate function approximation,
demonstrating numerical stability and convergence down to 10−14, and outperforming selected
competing tools. However, global polynomials are generally more computationally expensive
to evaluate than local piecewise polynomials or B-splines, as they require more floating-
point operations. There are two primary reasons for this. First, global polynomials lack
compact support; evaluating them typically involves computing all terms (i.e., coefficient-basis
function pairs) in the expansion. Second, they often require high polynomial degrees, resulting
in a large number of terms compared to local methods, which usually employ low-degree
polynomials. Moreover, the basis functions in a high-degree global polynomial involve numerous
multiplications, further increasing the computational cost.

Operations on the Minterpy polynomials
As mentioned, Minterpy polynomials support arithmetic operations (addition, subtraction,
multiplication) and calculus operations (differentiation, definite integration). Except for definite
integration (yielding a numerical value), these operations produce another polynomial, ensuring
closure. Among compared tools, only Chaospy offers similar capabilities.

Polynomial regression
By default, Minterpy uses Leja-ordered Chebyshev-Lobatto nodes. For scattered or equispaced
data, it supports well-conditioned least-squares construction (Veettil et al., 2022). The resulting
polynomials are Minterpy polynomials9.

Applications
Minterpy has been applied in various research fields, including data fitting in physics (Dornheim
et al., 2023), serving as a surrogate model in blackbox optimization (Schreiber et al., 2023),
and representing level sets in differential geometry (Veettil et al., 2023).

Author contributions
The contributions to this paper are listed according to CRediT. D. Wicaksono: Conceptu-
alization, software, validation, visualization, writing—original draft. U. Hernandez Acosta:
Conceptualization, project administration, software, writing—review & editing. S. K. Thekke
Veettil: Conceptualization, software. J. Kissinger: Conceptualization, software. M. Hecht:
Conceptualization, supervision, funding acquisition, writing—review & editing.

8Both Chaospy and equadratures support sparse polynomial construction, which can help reduce the number
of coefficients. Comparing these approaches, however, is beyond the scope of this work.

9The polynomials are, however, not strictly interpolatory, i.e., they generally do not satisfy Equation 1.

Wicaksono et al. (2025). Minterpy: multivariate polynomial interpolation in Python. Journal of Open Source Software, 10(109), 7702.
https://doi.org/10.21105/joss.07702.

5

https://credit.niso.org
https://doi.org/10.21105/joss.07702

Acknowledgments
The authors express their gratitude to Michael Bussmann for his support and suggestions;
Michał Bajda for the Minterpy logo design; and Janina Schreiber for the code review.

The work is partly funded by the Center for Advanced Systems Understanding (CASUS) which
is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the
Saxony Ministry for Science, Culture and Tourism (SMWK). Funding is provided through tax
funds based on the budget approved by the Saxony State Parliament.

References
Breuß, M., Kemm, F., & Vogel, O. (2018). A numerical study of Newton interpolation with

extremely high degrees. Kybernetika, 279–288. https://doi.org/10.14736/kyb-2018-2-0279

Cools, R. (2002). Advances in multidimensional integration. Journal of Computational and
Applied Mathematics, 149(1), 1–12. https://doi.org/10.1016/s0377-0427(02)00517-4

de Branges, L. (1959). The Stone-Weierstrass theorem. Proceedings of the American Mathe-
matical Society, 10(5), 822–824. https://doi.org/10.1090/s0002-9939-1959-0113131-7

Dornheim, T., Wicaksono, D., Suarez-Cardona, J. E., Tolias, P., Böhme, M. P., Moldabekov,
Z. A., Hecht, M., & Vorberger, J. (2023). Extraction of the frequency moments of spectral
densities from imaginary-time correlation function data. Physical Review B, 107(15),
155148. https://doi.org/10.1103/physrevb.107.155148

Driscoll, T. A., Hale, N., & Trefethen, L. N. (Eds.). (2014). Chebfun guide. Pafnuty
Publications. https://www.chebfun.org/docs/guide/

Feinberg, J., & Langtangen, H. P. (2015). Chaospy: An open source tool for designing
methods of uncertainty quantification. Journal of Computational Science, 11, 46–57.
https://doi.org/10.1016/j.jocs.2015.08.008

Goldstine, H. H. (1977). A history of numerical analysis from the 16th through the 19th
century. Springer New York. https://doi.org/10.1007/978-1-4684-9472-3

Hecht, M., Hofmann, P.-A., Wicaksono, D., Hernandez Acosta, U., Gonciarz, K., Kissinger, J.,
Sivkin, V., & Sbalzarini, I. F. (2025). Multivariate Newton interpolation in downward closed
spaces reaches the optimal geometric approximation rates for Bos–Levenberg–Trefethen
functions. https://arxiv.org/abs/2504.17899

Hegemann, N., & Heidenreich, S. (2023). PyThia: A Python package for uncertainty
quantification based on non-intrusive polynomial chaos expansions. Journal of Open Source
Software, 8(89), 5489. https://doi.org/10.21105/joss.05489

Margolis, B., & Lyons, K. (2019). ndsplines: A Python library for tensor-product B-Splines of
arbitrary dimension. Journal of Open Source Software, 4(42), 1745. https://doi.org/10.
21105/joss.01745

Meijering, E. (2002). A chronology of interpolation: From ancient astronomy to modern signal
and image processing. Proceedings of the IEEE, 90(3), 319–342. https://doi.org/10.1109/
5.993400

Olver, S., Townsend, A., & others. (2023). ApproxFun.jl: A Julia package for function
approximation. In GitHub repository. GitHub. https://github.com/JuliaApproximation/
ApproxFun.jl

Reichel, L. (1990). Newton interpolation at Leja points. BIT, 30(2), 332–346. https:
//doi.org/10.1007/bf02017352

Richardson, M., & others. (2024). ChebPy - a Python implementation of Chebfun. In GitHub

Wicaksono et al. (2025). Minterpy: multivariate polynomial interpolation in Python. Journal of Open Source Software, 10(109), 7702.
https://doi.org/10.21105/joss.07702.

6

https://www.casus.science
https://doi.org/10.14736/kyb-2018-2-0279
https://doi.org/10.1016/s0377-0427(02)00517-4
https://doi.org/10.1090/s0002-9939-1959-0113131-7
https://doi.org/10.1103/physrevb.107.155148
https://www.chebfun.org/docs/guide/
https://doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.1007/978-1-4684-9472-3
https://arxiv.org/abs/2504.17899
https://doi.org/10.21105/joss.05489
https://doi.org/10.21105/joss.01745
https://doi.org/10.21105/joss.01745
https://doi.org/10.1109/5.993400
https://doi.org/10.1109/5.993400
https://github.com/JuliaApproximation/ApproxFun.jl
https://github.com/JuliaApproximation/ApproxFun.jl
https://doi.org/10.1007/bf02017352
https://doi.org/10.1007/bf02017352
https://doi.org/10.21105/joss.07702

repository. GitHub. https://github.com/chebpy/chebpy

Schreiber, J., Wicaksono, D., & Hecht, M. (2023). Minimizing black boxes due to polynomial-
model-based optimization. Proceedings of the Companion Conference on Genetic and
Evolutionary Computation, 2, 759–762. https://doi.org/10.1145/3583133.3590743

Seshadri, P., & Parks, G. (2017). Effective-Quadratures (EQ): Polynomials for computational
engineering studies. The Journal of Open Source Software, 2(11), 166. https://doi.org/
10.21105/joss.00166

Swierczewski, C., & Verdier, O. (2024). pychebfun - Python Chebyshev functions. In GitHub
repository. GitHub. https://github.com/pychebfun/pychebfun

Tal-Ezer, H. (1991). High degree polynomial interpolation in Newton form. SIAM Journal on
Scientific and Statistical Computing, 12(3), 648–667. https://doi.org/10.1137/0912034

Tate, J., Liu, Z., Bergquist, J. A., Rampersad, S., White, D., Charlebois, C., Rupp, L., Brooks,
D. H., MacLeod, R. S., & Narayan, A. (2023). UncertainSCI: A Python package for
noninvasive parametric uncertainty quantification of simulation pipelines. Journal of Open
Source Software, 8(90), 4249. https://doi.org/10.21105/joss.04249

Trefethen, L. N. (2011). Six myths of polynomial interpolation and quadrature. Mathematics
Today, 47, 184–188.

Trefethen, L. N. (2016). Inverse Yogiisms. Notices of the American Mathematical Society,
63(11), 1281–1285. https://doi.org/10.1090/noti1446

Trefethen, L. N. (2017a). Cubature, approximation, and isotropy in the hypercube. SIAM
Review, 59(3), 469–491. https://doi.org/10.1137/16m1066312

Trefethen, L. N. (2017b). Multivariate polynomial approximation in the hypercube. Proceedings
of the American Mathematical Society, 145(11), 4837–4844. https://doi.org/10.1090/
proc/13623

Trefethen, L. N. (2019). Approximation theory and approximation practice, extended edition.
Society for Industrial; Applied Mathematics (SIAM).

Veettil, S. K. T., Zavalani, G., Acosta, U. H., Sbalzarini, I. F., & Hecht, M. (2023). Global poly-
nomial level sets for numerical differential geometry of smooth closed surfaces. SIAM Journal
on Scientific Computing, 45(4), A1995–A2018. https://doi.org/10.1137/22m1536510

Veettil, S. K. T., Zheng, Y., Hernandez Acosta, U., Wicaksono, D., & Hecht, M. (2022).
Multivariate polynomial regression of Euclidean degree extends the stability for fast approx-
imations of Trefethen functions. arXiv. https://doi.org/10.48550/arXiv.2212.11706

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., & others. (2020). SciPy 1.0: Fundamental algorithms for scientific computing
in Python. Nature Methods, 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Weise, K., Poßner, L., Müller, E., Gast, R., & Knösche, T. R. (2020). Pygpc: A sensitivity
and uncertainty analysis toolbox for Python. SoftwareX, 11, 100450. https://doi.org/10.
1016/j.softx.2020.100450

Wicaksono, D. C., Hernandez Acosta, U., Thekke Veettil, S. K., Kissinger, J., & Hecht, M.
(2025). Data to ”Minterpy: Multivariate polynomial interpolation in Python”. https:
//doi.org/10.14278/rodare.3379

Xiu, D. (2009). Fast numerical methods for stochastic computations: A review. Communica-
tions in Computational Physics, 5(2–4), 242–272.

Xiu, D., & Karniadakis, G. E. (2002). The Wiener–Askey polynomial chaos for stochastic
differential equations. SIAM Journal on Scientific Computing, 24(2), 619–644. https:
//doi.org/10.1137/S1064827501387826

Wicaksono et al. (2025). Minterpy: multivariate polynomial interpolation in Python. Journal of Open Source Software, 10(109), 7702.
https://doi.org/10.21105/joss.07702.

7

https://github.com/chebpy/chebpy
https://doi.org/10.1145/3583133.3590743
https://doi.org/10.21105/joss.00166
https://doi.org/10.21105/joss.00166
https://github.com/pychebfun/pychebfun
https://doi.org/10.1137/0912034
https://doi.org/10.21105/joss.04249
https://doi.org/10.1090/noti1446
https://doi.org/10.1137/16m1066312
https://doi.org/10.1090/proc/13623
https://doi.org/10.1090/proc/13623
https://doi.org/10.1137/22m1536510
https://doi.org/10.48550/arXiv.2212.11706
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.softx.2020.100450
https://doi.org/10.1016/j.softx.2020.100450
https://doi.org/10.14278/rodare.3379
https://doi.org/10.14278/rodare.3379
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.21105/joss.07702

	Summary
	Statement of need
	Package overview
	Minterpy polynomials for function approximation
	Operations on the Minterpy polynomials
	Polynomial regression
	Applications

	Author contributions
	Acknowledgments
	References

