
gpu-ISTL - Extending OPM Flow with GPU Linear
Solvers
Kjetil Olsen Lye 1, Tobias Meyer Andersen 1, Atgeirr Flø Rasmussen 1,
and Jakob Torben 1

1 Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway
DOI: 10.21105/joss.07740

Software
• Review
• Repository
• Archive

Editor: Prashant Jha
Reviewers:

• @pratikvn
• @berenger-eu

Submitted: 21 October 2024
Published: 13 May 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The gpu-ISTL framework provides Dune-ISTL compatible sparse linear operations on the GPU
for the OPM Flow simulator (Rasmussen et al., 2021). OPM Flow is an open-source fully
implicit simulator for subsurface reservoir simulation of industrial complexity, where efficient
linear solvers are critical for computational performance. It is written in C++ and relies on
the Distributed and Unified Numerics Environment (Dune) (Bastian et al., 2021) for several
numerical algorithms. In particular, templated linear-solver algorithms provided by the Dune
Iterative Solver Template Library (Dune-ISTL) (Blatt & Bastian, 2007) are essential in the
simulator. To GPU-accelerate the simulator with minimal effort, gpu-ISTL provides classes
that can instantiate Dune-ISTL algorithms with types that automatically runs the algorithms
provided on the GPU. Both AMD and Nvidia GPUs are supported in the same source code by
utilizing hipify-perl (Advanced Micro Devices, Inc., 2024b) to generate HIP code (Advanced
Micro Devices, Inc., 2024a) from the existing CUDA code (NVIDIA et al., 2023) when compiling
OPM Flow.

Statement of Need
Simulating multiphase and multicomponent fluid behavior within complex geological formations
is crucial for modern geoenergy operations. The repeated solution of large, sparse systems
of linear equations is typically the most computationally expensive part of these simulations.
Therefore, it is essential for a reservoir simulator like OPM Flow, which is used both commercially
and for research, to have flexible linear algebra libraries that optimally utilize contemporary
computer hardware. To fill this need, we introduce gpu-ISTL, a generic Dune-ISTL compatible
GPU-accelerated linear solver library and employ it within OPM Flow.

A current and prominent trend in computer architecture is hardware specialization (Hennessy
& Patterson, 2017), where modern computational units are increasingly tailored to specific
workloads. Having to write tailored implementations of each numerical method for every
possible hardware provider is generally undesirable, especially in a large codebase like OPM
Flow, which exceeds half a million lines of code. The gpu-ISTL library leverages the parallel
computational resources of GPUs to meet industry performance demands. It also facilitates
further research into the development of efficient GPU-accelerated linear solvers, without
requiring intrusive and substantial changes to the OPM Flow codebase.

Our new library enhances research in numerical methods for reservoir simulation by leveraging
OPM Flow’s extensive infrastructure for complex reservoirs. It enables investigations into
GPU-based linear solvers, preconditioners, autotuning and mixed-precision computations, see
for instance (Andersen et al., 2025). By integrating gpu-ISTL into the OPM Flow linear solver
subsystem, development remains synchronized with the simulator’s rapidly evolving codebase,
ensuring compatibility and continuity in development efforts.

Lye et al. (2025). gpu-ISTL - Extending OPM Flow with GPU Linear Solvers. Journal of Open Source Software, 10(109), 7740. https:
//doi.org/10.21105/joss.07740.

1

https://orcid.org/0000-0001-6914-1010
https://orcid.org/0009-0000-8913-3034
https://orcid.org/0000-0002-7932-3835
https://orcid.org/0009-0002-9036-3739
https://doi.org/10.21105/joss.07740
https://github.com/openjournals/joss-reviews/issues/7740
https://github.com/OPM/opm-simulators
https://doi.org/10.5281/zenodo.15259505
https://prashjha.github.io/
https://orcid.org/0000-0003-2158-364X
https://github.com/pratikvn
https://github.com/berenger-eu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07740
https://doi.org/10.21105/joss.07740


Several standalone libraries GPU-accelerate linear algebra operations. Some also support at
least both Nvidia and AMD cards, as well as the iterative solvers required by OPM Flow.
Examples of open-source libraries fulfilling all these criteria are ViennaCL (Rupp et al., 2016)
and PETSc (Mills et al., 2021), though those are not Dune-ISTL compatible. The Bandicoot
library (Curtin et al., 2023), an extension to the Armadillo (Sanderson & Curtin, 2019) library,
is another worthy mention of a GPU library that effectively computes linear algebra operations,
although it does not feature the iterative solvers that are vital to OPM.

The gpu-ISTL Components
The gpu-ISTL library encompasses numerical algorithms, Dune adapters, and essential linear
algebra components such as GpuVector and GpuSparseMatrix that leverage optimized libraries
from Nvidia and AMD for efficient mathematical operations. Preconditioners such as Jacobi,
ILU(0), and DILU are implemented with custom GPU kernels to enhance the performance of
the bi-conjugate gradient stabilized (BiCGSTAB) method within gpu-ISTL. Adapter classes
like SolverAdapter and PreconditionerAdapter allow mixing GPU and CPU solvers or pre-
conditioners for ease of development, testing and validation. Moreover, GpuOwnerOverlapCopy
extends the MPI functionality in Dune to support multi-GPU simulations, including CUDA-
aware MPI for Nvidia cards to accelerate inter-process memory transfers. The library also
provides capabilities for autotuning thread-block sizes in user-implemented GPU kernels. Figure
1 contains a simplified class diagram with of some of the components that constitute gpu-ISTL.

Figure 1: Class diagram showing a simplified view of how gpu-ISTL is implemented. The colored
backgrounds indicate which namespace the classes belong to. Colors on individual classes correspond
to what conceptual part of the simulator they are a part of. White represents linear solvers, red
represents the classes enabling multiprocess simulations, orange represents the implementation linear
solver preconditioners, and green represents general linear algebra functionality.

Furthermore, Figure 2 provides a sequence diagram for the call stack of a single linear solve in
OPM Flow using the gpu-ISTL framework. We note that the sequence diagram is for the MPI

Lye et al. (2025). gpu-ISTL - Extending OPM Flow with GPU Linear Solvers. Journal of Open Source Software, 10(109), 7740. https:
//doi.org/10.21105/joss.07740.

2

https://doi.org/10.21105/joss.07740
https://doi.org/10.21105/joss.07740


free version. In Figure 2 we denote the (indirect) calls to specific GPU kernels as an arrow
from the corresponding gpu-ISTL classes to the right-hand red box representing the GPU.

Figure 2: A sequence diagram for a single linear solver in OPM Flow using the gpu-ISTL framework.
For readability, components from OPM are marked in green, components from DUNE in yellow and
components from gpu-ISTL are marked in red. The classes GpuVector, GpuSparseMatrix and GpuILU0
of gpu-ISTL will (through some indirection) call GPU kernels, which is visualized as a big red block on
the right-hand side of the diagram.

OPM Flow’s build system utilizes hipify-perl (Advanced Micro Devices, Inc., 2024b), which
translates CUDA (NVIDIA et al., 2023) code to HIP (Advanced Micro Devices, Inc., 2024a)
code if one wants to compile for AMD GPUs. Incorporating the translation in the build system
ensures that the hardware of the two largest GPU vendors are supported without incurring any
extra overhead for the developers of the CUDA code in the repository.

Performance Case Study of 𝐶𝑂2 Storage Simulation
To demonstrate the effectiveness of gpu-ISTL, we conduct a scaling study on geological
carbon storage cases derived from the 11th Society of Petroleum Engineers (SPE) Comparative
Solutions Project (CSP) (Nordbotten et al., 2024). Specifically, we simulate Case C from
the SPE11 CSP using Pyopmspe11 (Landa-Marbán & Sandve, 2025) with successively finer
discretizations.

We simulate using the ILU0 preconditioned BiCGSTAB as the linear solver on three different
hardware configurations, tracking the time spent in the linear solver normalized by the number
of linear iterations. Specifically, we utilize 16 cores of an AMD 7950X CPU for the first run,
an AMD Radeon RX 7900XTX GPU for the second run, and an Nvidia RTX 4070Ti GPU
for the third run. Figure 3 shows the speedup of the GPU compared to the normalized CPU
performance. The results demonstrate that GPU runtimes scale better than CPU runtimes
as problem sizes increase. This highlights the performance benefits of using the advanced
linear solvers with preconditioners implemented in gpu-ISTL. Furthermore, it underscores
how gpu-ISTL and OPM Flow can serve as a robust platform for exploring and testing novel
preconditioners within an industry-relevant environment, offering rapid evaluation on both
synthetic and real-life cases.

Lye et al. (2025). gpu-ISTL - Extending OPM Flow with GPU Linear Solvers. Journal of Open Source Software, 10(109), 7740. https:
//doi.org/10.21105/joss.07740.

3

https://doi.org/10.21105/joss.07740
https://doi.org/10.21105/joss.07740


Figure 3: Speedup of the mean time per linear iteration across a 2000-year simulation case derived from
Case C of the 11th SPE Comparative Solution Project compared to the CPU implementation. A speedup
of 5.6 and 4.8 is achieved on the largest case for the RTX 4070Ti and Radeon RX 7900XTX respectively.

Case Study Configuration
The simulation case files generated by Pyopmspe11 for the case study can be found in the
ZIP-file “SPE11C_LONG.zip” in our Zenodo dataset (Lye et al., 2025). In particular, the
case files are on the form “SPE11C<S>CUBE_LONG.DATA”, where “<S>” represents the
sidelength of the reservoir in terms of number of cells, and thus the cube root of the total
number of cells.

To produce the CPU case study results, we use the following command to run OPM Flow with
16 processes in parallel, where we specify that the linear solver is described in a JSON file
called “cpu_ilu0.json”.

mpirun -n 16 flow \

/path/to/case_name.DATA \

--output-dir=/path/to/output \

--linear-solver=/path/to/cpu_ilu0.json \

--threads-per-process=1 \

--newton-min-iterations=1 \

--matrix-add-well-contributions=true

The “cpu_ilu0.json” should contain the following.

{

"tol": "0.01",

"maxiter": "200",

"verbosity": "0",

"solver": "bicgstab",

"preconditioner": {

"type": "ILU0",

"ilulevel": "0"

}

}

Lye et al. (2025). gpu-ISTL - Extending OPM Flow with GPU Linear Solvers. Journal of Open Source Software, 10(109), 7740. https:
//doi.org/10.21105/joss.07740.

4

https://doi.org/10.21105/joss.07740
https://doi.org/10.21105/joss.07740


We use the command below to run the GPU simulations, where we only use one process,
because we run it on a single GPU. To save simulation time we use 16 threads in parallel,
which does not affect the timing for the linear solver which exists entirely on the GPU.

mpirun -n 1 flow \

/path/to/case_name.DATA \

--output-dir=/path/to/output \

--linear-solver=/path/to/gpu_ilu0.json \

--threads-per-process=16 \

--newton-min-iterations=1 \

--matrix-add-well-contributions=true

The “gpu_ilu0.json” file enables the use of gpu-ISTL by specifying that we want to use the
gpubicgstab linear solver, and the OPMGPUILU0 preconditioner.

{

"tol": "0.01",

"maxiter": "200",

"verbosity": "0",

"solver": "gpubicgstab",

"preconditioner": {

"type": "OPMGPUILU0",

"ilulevel": "0"

}

}

Acknowledgements
Development of gpu-ISTL in OPM Flow from 2021 to 2024 was part of the EU project HPC,
Big Data, and Artificial Intelligence convergent platform (ACROSS). Development in 2024 has
been financed by Equinor.

References
Advanced Micro Devices, Inc. (2024a). Heterogeneous-computing interface for portability.

https://rocm.docs.amd.com/projects/HIP/en/latest/

Advanced Micro Devices, Inc. (2024b). Hipify-perl. https://rocmdocs.amd.com/projects/
HIPIFY/en/latest/hipify-perl.html#hipify-perl

Andersen, T. M., Torben, J., Lye, K. O., Rasmussen, A. F., & Lie, K. A. (2025). A comparison
of DILU and ILU(0) as GPU-accelerated preconditioners (Vol. 25RSC, p. D021S009R004).
https://doi.org/10.2118/223873-MS

Bastian, P., Blatt, M., Dedner, A., Dreier, N.-A., Engwer, C., Fritze, R., Gräser, C., Grüninger,
C., Kempf, D., Klöfkorn, R., Ohlberger, M., & Sander, O. (2021). The Dune framework:
Basic concepts and recent developments. Computers & Mathematics with Applications,
81, 75–112. https://doi.org/10.1016/j.camwa.2020.06.007

Blatt, M., & Bastian, P. (2007). The iterative solver template library. In B. Kagström,
E. Elmroth, J. Dongarra, & J. Wasniewski (Eds.), Applied parallel computing – state
of the art in scientific computing (pp. 666–675). Springer. https://doi.org/10.1007/
978-3-540-75755-9_82

Curtin, R. R., Edel, M., & Sanderson, C. (2023). Bandicoot: C++ library for GPU linear
algebra and scientific computing. arXiv:2308.03120v1. http://arxiv.org/abs/2308.03120v1

Lye et al. (2025). gpu-ISTL - Extending OPM Flow with GPU Linear Solvers. Journal of Open Source Software, 10(109), 7740. https:
//doi.org/10.21105/joss.07740.

5

https://rocm.docs.amd.com/projects/HIP/en/latest/
https://rocmdocs.amd.com/projects/HIPIFY/en/latest/hipify-perl.html#hipify-perl
https://rocmdocs.amd.com/projects/HIPIFY/en/latest/hipify-perl.html#hipify-perl
https://doi.org/10.2118/223873-MS
https://doi.org/10.1016/j.camwa.2020.06.007
https://doi.org/10.1007/978-3-540-75755-9_82
https://doi.org/10.1007/978-3-540-75755-9_82
http://arxiv.org/abs/2308.03120v1
https://doi.org/10.21105/joss.07740
https://doi.org/10.21105/joss.07740


Hennessy, J. L., & Patterson, D. A. (2017). Computer architecture, sixth edition: A quantitative
approach (6th ed., pp. 5–6). Morgan Kaufmann Publishers Inc. ISBN: 0128119055

Landa-Marbán, D., & Sandve, T. H. (2025). pyopmspe11: A Python framework using
OPM Flow for the SPE11 benchmark project. Journal of Open Source Software. https:
//doi.org/10.21105/joss.07357

Lye, K. O., Andersen, T. M., Torben, J., & Rasmussen, A. (2025). Gpu-ISTL - extending
OPM flow with GPU linear solvers (Version 2024.10). Zenodo. https://doi.org/10.5281/
zenodo.15259506

Mills, R. T., Adams, M. F., Balay, S., Brown, J., & Dener, A. (2021). Toward performance-
portable PETSc for GPU-based exascale systems. Parallel Computing, 108, 102831.
https://doi.org/10.1016/j.parco.2021.102831

Nordbotten, J. M., Ferno, M. A., Flemisch, B., Kovscek, A. R., & Lie, K.-A. (2024). The
11th society of petroleum engineers comparative solution project: Problem definition. SPE
Journal, 29(05), 2507–2524. https://doi.org/10.2118/218015-pa

NVIDIA, Vingelmann, P., & Fitzek, F. H. P. (2023). CUDA, release: 12.2.r12.2. https:
//developer.nvidia.com/cuda-toolkit

Rasmussen, A. F., Sandve, T. H., Bao, K., Lauser, A., Hove, J., Skaflestad, B., Klöfkorn,
R., Blatt, M., Rustad, A. B., Sævareid, O., Lie, K.-A., & Thune, A. (2021). The Open
Porous Media Flow reservoir simulator. Computers & Mathematics with Applications, 81,
159–185. https://doi.org/10.1016/j.camwa.2020.05.014

Rupp, K., Tillet, P., Rudolf, F., Weinbub, J., Morhammer, A., Grasser, T., Jüngel, A.,
& Selberherr, S. (2016). ViennaCL—linear algebra library for multi- and many-core
architectures. SIAM Journal on Scientific Computing, 38(5), S412–S439. https://doi.org/
10.1137/15M1026419

Sanderson, C., & Curtin, R. (2019). Practical sparse matrices in C++ with hybrid storage and
template-based expression optimisation. Mathematical and Computational Applications,
24(3), 70. https://doi.org/10.3390/mca24030070

Lye et al. (2025). gpu-ISTL - Extending OPM Flow with GPU Linear Solvers. Journal of Open Source Software, 10(109), 7740. https:
//doi.org/10.21105/joss.07740.

6

https://doi.org/10.21105/joss.07357
https://doi.org/10.21105/joss.07357
https://doi.org/10.5281/zenodo.15259506
https://doi.org/10.5281/zenodo.15259506
https://doi.org/10.1016/j.parco.2021.102831
https://doi.org/10.2118/218015-pa
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1016/j.camwa.2020.05.014
https://doi.org/10.1137/15M1026419
https://doi.org/10.1137/15M1026419
https://doi.org/10.3390/mca24030070
https://doi.org/10.21105/joss.07740
https://doi.org/10.21105/joss.07740

	Summary
	Statement of Need
	The gpu-ISTL Components
	Performance Case Study of CO_2 Storage Simulation
	Case Study Configuration
	Acknowledgements
	References

