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Summary
MRI-NUFFT is a python package that provides a universal interface to various Non-Uniform Fast
Fourier Transform libraries running on CPU or GPU (gpuNUFFT, finufft, cufinufft, pyNFFT),
adding compatibility with standard array library (NumPy, CuPy, PyTorch, TensorFlow, etc.) On
top of these libraries it extends the existing NUFFT operations to provide a physical model of
the MRI acquisition process (e.g. multi-coil acquisition and static-field inhomogeneities). It also
provides a wide variety of customizable implementations of non-Cartesian sampling trajectories,
as well as density compensation methods. Finally, it proposes optimized auto-differentiation
with respect to the data and sampling locations for machine learning. With MRI-NUFFT one
can experiment with non-Cartesian sampling in MRI, get access to the latest advances in the
field and state-of-the-art sampling patterns.

Statement of need
MRI is an non-invasive biomedical imaging technique, where raw data is sampled in the
spatial frequency domain (k-space) and final images are obtained by applying an inverse (fast)
Fourier transform on this data. Traditionally, the data is sampled on a Cartesian grid (often
partially by skipping lines to accelerate the acquisition) and reconstructed using FFT-based
algorithms. However, the Cartesian approach is not always the best choice for data collection,
and non-Cartesian sampling schemes have been proposed to improve image quality, reduce
acquisition time or enable new imaging modalities. But the reconstruction of non-Cartesian
data is more challenging and requires the use of non-uniform fast Fourier transform (NUFFT)
algorithms. Several NUFFT libraries have been developed in the past few years, but they are not
always easy to use or don’t account for the specificities of MRI data acquisition (e.g. multi-coil
acquisition, static-field inhomogeneities, density compensation, etc.). Also their performances
can vary a lot depending on the use cases (2D vs 3D data, number of coils, etc.).

Moreover, non-Cartesian acquisitions are still an active research field, with new sampling
patterns being proposed regularly. With MRI-NUFFT one can easily experiment with these new
patterns and compare them to existing ones. Furthermore, there has been a growing interest
in using deep learning to jointly learn MRI acquisition and reconstruction, which requires to
compute the gradients of the reconstruction with respect to the raw data and/or the sampling
locations.
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Figure 1: MRI-NUFFT as an interface for non-Cartesian MRI

NUFFT Library compatibility
MRI-NUFFT is compatible with the following NUFFT librairies: finufft[Alex H. Barnett et
al. (2019)](A. H. Barnett, 2020), cufinufft(Shih et al., 2021), gpuNUFFT(Knoll et al., 2014),
TorchKbNufft(Muckley et al., 2020), pyNFFT, SigPy(Ong Frank & Lustig Michael, 2019)
and BART(Uecker et al., 2015). Using our benchmark we can also determine which NUFFT
implementation provides the best performances both in term of computation time and memory
footprint. At the time of writing, cufinufft and gpuNUFFT provide the best performances
by leveraging CUDA acceleration. MRI-NUFFT supports as well standard array libraries
(NumPy, CuPy, PyTorch, TensorFlow, etc.) and optimizes data copies, relying on the array-API
standard. It also provides several enhancements on top of these backends, notably an optimized
2.5D NUFFT (for stacks of 2D non uniform trajectories, commonly used in MRI), and a
data-consistency term for iterative reconstruction (ℱ∗

Ω (ℱΩ𝑥 − 𝑦)).

Extended Fourier Model
MRI-NUFFT provides a physical model of the MRI acquisition process, including multi-coil
acquisition and static-field inhomogeneities. This model is compatible with the NUFFT
libraries, and can be used to simulate the acquisition of MRI data, or to reconstruct data
from a given set of measurements. Namely we provide a linear operator that encapsulates the
forward and adjoint NUFFT operators, the coil sensitivity maps and (optionally) the static
field inhomogeneities. The forward model is described by the following equation:

𝑦(𝜈𝑖) =
𝑁
∑
𝑗=1

𝑥(𝑢𝑗)𝑒−2𝚤𝜋𝑢𝑗⋅𝜈𝑖 + 𝑛𝑖, 𝑖 = 1,… ,𝑀

where: 𝑥(𝑢) is the spatially varying image contrast acquired; 𝑦1,… , 𝑦𝑀 are the sampled points
at frequency locations; Ω = {𝜈1,… ,𝜈𝑀 ∈ [−1/2, 1/2]𝑑}; 𝑢𝑗 are the 𝑁 spatial locations of
image voxels, and 𝑛𝑖 is a zero-mean complex-valued Gaussian noise, modeling the thermal
noise of the scanner.

This can also be formulated using the operator notation 𝑦 = ℱΩ(𝑥) + 𝑛
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As the sampling locations Ω are non-uniform and the image locations 𝑢𝑗 are uniform, ℱΩ is a
NUDFT operator, and the equation above describe a Type 2 NUDFT. Similarly the adjoint
operator is a Type 1 NUDFT:

Table 1: Correspondence Table between NUFFT and MRI acquisition model.

NUFFT Type Operation MRI Transform Operator
Type 1 Adjoint K-space → image ℱ∗

Ω
Type 2 Forward Image → k-space ℱΩ

Parallel Imaging Model

In MRI the acquired signal can be received by multiple antennas (”coils”). Each coil possesses
a specific sensitivity profile (i.e. each sees the object differently due to its physical layout).

�̃� = ⎡⎢
⎣

ℱΩ𝑆1
⋮

ℱΩ𝑆𝐿

⎤⎥
⎦

𝑥 + 𝑛ℓ = ℱΩ𝑆 ⊗ 𝑥 + �̃�

where 𝑆1,… , 𝑆𝐿 are the sensitivity maps of each coil. Such maps can be acquired separately
by sampling the k-space low frequencies, or estimated from the data.

Off-resonance correction model

The constant magnetic field 𝐵0 applied in an MRI machine (typically 1.5, 3 or 7 Teslas) is
inherently disturbed by metal implants or even simply by difference in magnetic susceptibilities of
tissues (such at air-tissue interfaces close to the nose and ear canals). Those field perturbations
introduce a spatially varying phase shift in the acquired frequencies (noted Δ𝜔0), causing the
physical model to deviate from the ideal Fourier model. Fortunately, this inhomogeneity map
can be acquired separately or estimated then integrated as:

𝑦(𝑡𝑖) = ∫
ℝ𝑑

𝑥(𝑢)𝑒−2𝚤𝜋𝑢⋅𝜈𝑖+Δ𝜔(𝑢)𝑡𝑖𝑑𝑢

where 𝑡𝑖 is the time at which the frequency 𝜈𝑖 is acquired. With these mixed-domain field
perturbations, the Fourier model does not hold anymore and the FFT algorithm can no longer
be used. The main solution (Sutton et al., 2003) is to interpolate the mixed-domain exponential
term by splitting it into single-domain weights 𝑏𝑚,ℓ and 𝑐ℓ,𝑛, where 𝐿 ≪ 𝑀,𝑁 regular Fourier
transforms are performed to approximate the non-Fourier transform.

𝑥(𝑢𝑛) =
𝐿
∑
ℓ=1

𝑐ℓ,𝑛
𝑀
∑
𝑚

𝑦(𝑡𝑚)𝑏𝑚,ℓ𝑒2𝚤𝜋𝑢⋅𝜈𝑖

The coefficients 𝐵 = (𝑏𝑚,ℓ) ∈ ℂ𝑀×𝐿 and 𝐶 = (𝑐ℓ, 𝑛) ∈ ℂ𝐿×𝑁 can be estimated within
MRI-NUFFT.

Trajectories generation and expansions
MRI-NUFFT comes with a wide variety of non-Cartesian trajectory generation routines that
have been gathered from the literature. It also provides ways to extend existing trajectories
and export them to specific formats, for use in other toolkits and on MRI hardware.
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Auto-differentiation for data and sampling pattern
Following the formulation of (Wang & Fessler, 2023), MRI-NUFFT provides automatic
differentiation for all NUFFT backends, with respect to both gradients and data (image or
k-space). This enables efficient backpropagation through NUFFT operators and supports
research on learned sampling model and image reconstruction network.

MRI-NUFFT utilization
MRI-NUFFT is already used in conjunction with other software such as SNAKE-fMRI (Comby
et al., 2024), deepinv (Tachella et al., 2023) and PySAP-MRI (Farrens et al., 2020; Gueddari
et al., 2020)
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