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Abstract
Scientists and engineers use simulators to model empirically observed phenomena. However,
tuning the parameters of a simulator to ensure its outputs match observed data presents a
significant challenge. Simulation-based inference (SBI) addresses this by enabling Bayesian
inference for simulators, identifying parameters that match observed data and align with
prior knowledge. Unlike traditional Bayesian inference, SBI only needs access to simulations
from the model and does not require evaluations of the likelihood-function. In addition, SBI
algorithms do not require gradients through the simulator, allow for massive parallelization of
simulations, and can perform inference for different observations without further simulations or
training, thereby amortizing inference. Over the past years, we have developed, maintained,
and extended sbi, a PyTorch-based package that implements Bayesian SBI algorithms based on
neural networks. The sbi toolkit implements a wide range of inference methods, neural network
architectures, sampling methods, and diagnostic tools. In addition, it provides well-tested
default settings but also offers flexibility to fully customize every step of the simulation-based
inference workflow. Taken together, the sbi toolkit enables scientists and engineers to apply
state-of-the-art SBI methods to black-box simulators, opening up new possibilities for aligning
simulations with empirically observed data.
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Statement of need
Bayesian inference is a principled approach for determining parameters consistent with empirical
observations: Given a prior over parameters, a forward-model (defining the likelihood), and
observations, it returns a posterior distribution. The posterior distribution captures the
entire space of parameters that are compatible with the observations and the prior and it
quantifies parameter uncertainty. When the forward-model is given by a stochastic simulator,
Bayesian inference can be challenging: (1) the forward-model can be slow to evaluate, making
algorithms that rely on sequential evaluations of the likelihood (such as Markov-Chain Monte-
Carlo, MCMC) impractical, (2) the simulator can be non-differentiable, prohibiting the use of
gradient-based MCMC or variational inference (VI) methods, and (3) likelihood-evaluations can
be intractable, meaning that we can only generate samples from the model, but not evaluate
their likelihoods.

Recently, simulation-based inference (SBI) algorithms based on neural networks have been
developed to overcome these limitations (Hermans et al., 2020; Papamakarios et al., 2019;
Papamakarios & Murray, 2016). Unlike classical methods from Approximate Bayesian Compu-
tation (ABC, Sisson et al. (2018)), these methods use neural networks to learn the relationship
between parameters and simulation outputs. Neural SBI algorithms (1) allow for massive
parallelization of simulations (in contrast to sequential evaluations in MCMC methods), (2)
do not require gradients through the simulator, and (3) do not require evaluations of the
likelihood, but only samples from the simulator. Finally, many of these algorithms allow for
amortized inference, that is, after a large upfront cost of simulating data for the training
phase, they can return the posterior distribution for any observation without requiring further
simulations or retraining.

To aid in the effective application of these algorithms to a wide range of problems, we developed
the sbi toolkit. sbi implements a variety of state-of-the-art SBI algorithms, offering both
high-level interfaces, extensive documentation and tutorials for practitioners, as well as low-level
interfaces for experienced users and SBI researchers (giving full control over simulations, the
training loop, and the sampling procedure). Since the original release of the sbi package
(Tejero-Cantero et al., 2020), the community of contributors has expanded significantly,
resulting in a large number of improvements that have made sbi more flexible, performant,
and reliable. sbi now supports a wider range of amortized and sequential inference methods,
neural network architectures (including normalizing flows, flow- and score-matching, and
various embedding network architectures), samplers (including MCMC, variational inference,
importance sampling, and rejection sampling), diagnostic tools, visualization tools, and a
comprehensive set of tutorials on how to use these features.

The sbi package is already used extensively by the machine learning research community
(Boelts et al., 2022; Deistler, Gonçalves, et al., 2022; Dirmeier et al., 2023; Dyer et al., 2022b;
Gloeckler et al., 2023, 2022, 2024; Hermans et al., 2022; Linhart et al., 2024; Muratore et al.,
2022; Spurio Mancini et al., 2023; Wiqvist et al., 2021) but has also fostered the application
of SBI in various fields of research (Avecilla et al., 2022; Bernaerts et al., 2023; Boelts et
al., 2023; Bondarenko et al., 2023; Confavreux et al., 2023; Deistler, Macke, et al., 2022;
Dingeldein et al., 2023; Dyer et al., 2022a; Gao et al., 2024; Groschner et al., 2022; Hahn &
Melchior, 2022; Hashemi et al., 2023; Jin et al., 2023; Lemos et al., 2024; Lowet et al., 2023;
Mishra-Sharma & Cranmer, 2022; Myers-Joseph et al., 2024; Rößler et al., 2023; Wang et al.,
2024).

Description
sbi is a flexible and extensive toolkit for running simulation-based Bayesian inference workflows.
sbi supports any kind of (offline) simulator and prior, a wide range of inference methods,
neural networks, and samplers, as well as diagnostic methods and analysis tools (Figure 1).
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Figure 1: Features of the sbi package. Components that were added since the initial release described
in Tejero-Cantero et al. (2020) are marked in red.

A significant challenge in making SBI algorithms accessible to a broader community lies in
accommodating diverse and complex simulators, as well as varying degrees of flexibility in each
step of the inference process. To address this, sbi provides pre-configured defaults for all
inference methods, but also allows full customization of every step in the process (including
simulation, training, sampling, diagnostics and analysis).

Simulator & prior: The sbi toolkit requires only simulation parameters and simulated data
as input, without needing direct access to the simulator itself. However, if the simulator can
be provided as a Python callable, sbi can optionally parallelize running the simulations from
a given prior using joblib (Varoquaux, 2008). Additionally, sbi can automatically handle
failed simulations or missing values, it supports both discrete and continuous parameters and
observations (or mixtures thereof) and it provides utilities to flexibly define priors.

Methods: sbi implements a wide range of neural network-based SBI algorithms, among them
Neural Posterior Estimation (NPE) with various conditional estimators, Neural Likelihood
Estimation (NLE), and Neural Ratio Estimation (NRE). Each of these methods can be run
either in an amortized mode, where the neural network is trained once on a set of pre-existing
simulation results and then performs inference on any observation without further simulations
or retraining, or in a sequential mode where inference is focused on one observation to improve
simulation efficiency with active learning, running simulations with parameters likely to have
resulted in the observation.

Neural networks and training: sbi implements a wide variety of state-of-the-art conditional
density estimators for NPE and NLE, including normalizing flows (Greenberg et al., 2019;
Papamakarios et al., 2021) (via nflows (Durkan et al., 2019) and zuko (Rozet, 2023)), diffusion
models (Geffner et al., 2023; Simons et al., 2023; Song et al., 2021), mixture density networks
(Bishop, 1994), and flow matching (Lipman et al., 2023; Wildberger et al., 2023) (via zuko),
as well as ensembles of any of these networks. sbi also implements a large set of embedding
networks that can automatically learn summary statistics of (potentially) high-dimensional
simulation outputs (including multilayer perceptrons, convolutional networks, and permutation-
invariant networks). The neural networks can be trained with a pre-configured training loop
with established default values, but sbi also allows full access over the training loop when
desired.

Sampling: For NLE and NRE, sbi implements a large range of samplers, including MCMC (with
chains vectorized across observations), variational inference, rejection sampling, or importance
sampling, as well as wrappers to use MCMC samplers from Pyro and PyMC (Abril-Pla et al.,
2023; Bingham et al., 2019). sbi can perform inference for single observations or for multiple
i.i.d. observations, and can use importance sampling to correct for potential inaccuracies in
the posterior if the likelihood is available.

Diagnostics and analysis: The sbi toolkit also implements a large set of diagnostic tools,
such as simulation-based calibration (SBC) (Talts et al., 2018), expected coverage (Deistler,
Gonçalves, et al., 2022; Hermans et al., 2022), local C2ST (Linhart et al., 2024), and TARP
(Lemos et al., 2023). Additionally, sbi offers visualization tools for the posterior, including
marginal and conditional corner plots to visualize high-dimensional distributions, calibration
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plots, and wrappers for Arviz (Kumar et al., 2019) diagnostic plots.

With sbi, our goal is to advance scientific discovery and computational engineering by making
Bayesian inference accessible to a broad range of models, including those with inaccessible
likelihoods, and to a broader range of users, including both machine learning researchers and
domain practitioners. We have created an open architecture and embraced community-driven
development practices to encourage collaboration with other machine learning researchers and
applied scientists to join us in this long-term vision.

Related software
Simulation-based inference methods implemented in the sbi package require only access
to simulated data, which can also be generated offline in other programming languages or
frameworks. This sets sbi apart from toolboxes for traditional Bayesian inference, such as
MCMC-based methods (Abril-Pla et al., 2023; Bingham et al., 2019; Gelman et al., 2015),
which rely on likelihood evaluations, and from probabilistic programming languages (e.g., Pyro
(Bingham et al., 2019), NumPyro (Phan et al., 2019), Stan (Gelman et al., 2015), or Turing.jl
(Ge et al., 2018)), which typically require the simulator to be differentiable and implemented
within their respective frameworks (Quera-Bofarull et al., 2023).

Since the original release of the sbi package, several other packages that implement neural
network-based SBI algorithms have emerged. The lampe (Rozet et al., 2021) package offers
neural posterior and neural ratio estimation, primarily targeting SBI researchers with a low-level
API and full flexibility over the training loop. Its development has stopped in favor of the
sbi project in July 2024. The BayesFlow package (Radev et al., 2023) focuses on a set of
amortized SBI algorithms based on posterior and likelihood estimation that have been developed
in the respective research labs (Radev et al., 2020). The swyft package (undark-lab, 2023)
specializes in algorithms based on neural ratio estimation. The sbijax package (Dirmeier et
al., 2024) implements a set of inference methods in JAX.
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