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Summary
diverse-seq implements computationally efficient alignment-free algorithms that enable
efficient prototyping for phylogenetic workflows. It can accelerate parameter selection searches
for sequence alignment and phylogeny estimation by identifying a subset of sequences that are
representative of the diversity in a collection. We show that selecting representative sequences
with an entropy measure of 𝑘-mer frequencies corresponds well to sampling via conventional
genetic distances. The computational performance is linear with respect to the number of
sequences and can be run in parallel. Applied to a collection of 10.5k whole microbial genomes
on a laptop took ~8 minutes to prepare the data and 4 minutes to select 100 representatives.
diverse-seq can further boost the performance of phylogenetic estimation by providing a
seed phylogeny that can be further refined by a more sophisticated algorithm. For ~1k whole
microbial genomes on a laptop, it takes ~1.8 minutes to estimate a bifurcating tree from mash
distances.

The diverse-seq algorithms are not limited to homologous sequences. As such, they can
improve the performance of other workflows. For instance, machine learning projects that
involve non-homologous sequences can benefit as representative sampling can mitigate biases
from imbalanced groups.

diverse-seq is a BSD-3 licensed Python package that provides both a command-line interface
and cogent3 plugins. The latter simplifies integration by users into their own analyses. It is
available via the Python Package Index and GitHub.

Statement of need
The algorithms required for phylogenetics — multiple sequence alignment and phylogeny
estimation — are both compute intensive. As the size of DNA sequence datasets continues
to increase, there is a need for a tool that can effectively lessen the computational burden
associated with this widely used analysis.

Accurately selecting a representative subset of biological sequences can improve the statistical
accuracy and computational performance of data sampling workflows. In many cases, the
reliability of such analyses is contingent on the sample capturing the full diversity of the original
collection (e.g. estimating large phylogenies Parks et al., 2018; Zhu et al., 2019). Additionally,
the computation time of algorithms reliant on numerical optimisation, such as phylogenetic
estimation, can be markedly reduced by having a good initial estimate.

Existing tools for the data sampling problem require input data in formats that themselves can
be computationally costly to acquire. For instance, tree-based sequence selection procedures
can be efficient, but they rely on a phylogenetic tree or a pairwise genetic distance matrix, both
of which require alignment of homologous sequences (Balaban et al., 2019; e.g. Widmann et
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al., 2006). Adding both the time for sequence alignment and tree estimation presents a barrier
to their use.

The diverse-seq sequence selection algorithms are linear in time for the number of sequences
and more flexible than published approaches (Balaban et al., 2019; e.g. Widmann et al., 2006).
While the algorithms do not require homologous sequences, they can be applied to them. In
the homologous sequence case, the set selected is comparable to what would be produced using
a genetic distance measure. The diverse-seq clustering algorithm is linear in time for the
combined sequence length. For homologous sequences, the estimated trees are approximations
of those estimated from an alignment by IQ-TREE2 (Minh et al., 2020).

Definitions
A 𝑘-mer is a subsequence of length 𝑘, and the frequency of each 𝑘-mer in a sequence forms a
𝑘-mer probability vector. The Shannon entropy is a measure of “uncertainty” in a probability
vector and is commonly used in sequence analysis (e.g. Schneider & Stephens, 1990). The
Shannon entropy is calculated as 𝐻 = −∑𝑖 𝑝𝑖 log2 𝑝𝑖 where 𝑝𝑖 is the probability of the 𝑖-th
𝑘-mer. As an indication of the interpretability of Shannon entropy, with 𝑘 = 1 a DNA sequence
with equifrequent nucleotides has the maximum possible 𝐻 = 2 (high uncertainty) while a
sequence with a single nucleotide has 𝐻 = 0 (no uncertainty).

Shannon entropy is integral to other statistical measures that quantify uncertainty (Lin, 1991),
including Jensen-Shannon divergence (JSD), which we employ in this work. As illustrated in
Table 1, the magnitude of JSD reflects the level of relatedness amongst sequences via the
similarity between their 𝑘-mer probability vectors. For a collection of 𝑁 DNA sequences 𝕊,
define 𝑓𝑖 as the 𝑘-mer frequency vector for sequence 𝑠𝑖. The JSD for the resulting set of
vectors, 𝔽, is

𝐽𝑆𝐷(𝔽) = 𝐻( 1
𝑁

𝑁
∑
𝑖

𝑓𝑖)−𝐻(𝔽),

where the first term corresponds to the Shannon entropy of the mean of the 𝑁 probability
vectors and the second term 𝐻(𝔽) is the mean of their corresponding Shannon entropies. For
vector 𝑓𝑖 ∈ 𝔽 its contribution to the total JSD of 𝔽 is

𝛿𝐽𝑆𝐷(𝑖) = 𝐽𝑆𝐷(𝔽) − 𝐽𝑆𝐷(𝔽 − {𝑓𝑖}).

From the equation, it is apparent that to update the JSD of a collection efficiently, we need
only track 𝑘-mer counts, total Shannon entropy and the number of sequences. Thus, the
algorithm can be implemented with a single pass through the data.

To facilitate the description below, we define the record with the minimum 𝛿𝐽𝑆𝐷 as

𝑙𝑜𝑤𝑒𝑠𝑡 = argmin
𝑖∈𝑁

𝛿𝐽𝑆𝐷(𝑖).

Algorithms
dvs subcommand: prep converts sequences into numpy arrays for faster processing.

The prep sub-command converts plain text sequence data into an on-disk storage format for
efficient access in the other steps. A user can provide either fasta or GenBank formatted DNA
sequence files. The sequences are converted into unsigned 8-bit integer numpy arrays and stored
in a single HDF5 file on disk. The resulting .dvseqs file is required for all the sub-commands.
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Selection of representative sequences
dvs subcommands: nmost samples the 𝑛 sequences that increase JSD most; max samples
sequences that maximise a user specified statistic, either the standard deviation or the coefficient
of variation of 𝛿𝐽𝑆𝐷.

The following optimisations have been employed to make the algorithm for computing the JSD
scalable in terms of the number of sequences.

1. Sequence data is BLOSC2 compressed as unsigned-8 bit integers and saved in HDF5
format on disk.

2. numba, a just-in-time compiler, is used for the core algorithms producing 𝑘-mers and
their counts, providing a significant speed up over a pure python implementation (Lam
et al., 2015).

3. Sequence loading and 𝑘-mer counting is triggered when a sequence record is considered
for inclusion in the divergent set, reducing the memory required to that for the user-
nominated size.

The nmost algorithm defines an exact number of sequences to be selected that maximise the
JSD. The order of input sequences is randomised and the selected set is initialised with the
first 𝑛 sequences. As shown in Figure 1, for each of the remaining sequences, if adding it to
the set 𝔽 − {𝑙𝑜𝑤𝑒𝑠𝑡} increases JSD, it replaces 𝑙𝑜𝑤𝑒𝑠𝑡. The max algorithm (Figure 2) differs
from nmost (Figure 1) by defining lower and upper bounds for the number of sequences in the
divergent set. It further amends the within-loop condition, allowing the number of sequences
in the set to change when a statistical measure of 𝛿𝐽𝑆𝐷 variance increases. We provide users
a choice of two measures of variance in 𝛿𝐽𝑆𝐷: the standard deviation or the coefficient of
variation.

Constructing a tree from 𝑘-mers
dvs subcommand: ctree estimates a phylogenetic tree from unaligned sequences using mash
distances.

The mash distance (Ondov et al., 2016) estimates the proportion of changes between two
sequences and can be computed in near linear time. It approximates the Jaccard distance
between the 𝑘-mer sets of the two sequences (the proportion of shared 𝑘-mers) from a subset
of all 𝑘-mers in the two sequences. This subset is called the MinHash sketch and its size is the
sketch size. When the 𝑘-mers are converted to integers through a hash function, and then
sorted, the MinHash sketch contains the first sketch size 𝑘-mers. We apply agglomerative
clustering with average linkage (Murtagh & Contreras, 2012) to the pairwise mash distances
to estimate a phylogenetic tree from unaligned sequences. We allow the user to select the
distance metric, 𝑘 and the sketch size.

dvs cogent3 apps
We provide dvs_nmost, dvs_max, dvs_ctree and dvs_par_ctree as cogent3 apps (Huttley,
Caley, et al., 2025). For users with cogent3 installed, these are available at runtime via
the cogent3 function get_app(). The apps mirror the settings from their command-line
implementation but differ in that they operate directly on a sequence collection, skipping
conversion to disk storage. The dvs_nmost and dvs_max directly return the selected subset
of sequences, dvs_ctree and dvs_par_ctree returns the estimated phylogenetic tree. The
dvs_par_ctree app runs in parallel on a single alignment. The dvs_max and dvs_ctree apps
are demonstrated in the plugin_demo.ipynb notebook.
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Performance

Selection of representative sequences
Recovery of representatives from synthetic knowns

We evaluate the ability of dvs max to recover known divergent lineages using simulated data.
The experimental design was intended to assess whether rare sequences can be recovered. We
defined four sequence families that differ in nucleotide composition and two distinct “pools”:
balanced, in which there were 25 members from each sequence family, or imbalanced, where
one sequence family occurred once, another 49 times and the remaining two families 25 times
each. If dvs max identifies a set of precisely 4 sequences with each sequence family represented,
this is counted as a success. Each scenario was repeated 50 times. As shown in Figure 3, the
primary determinant of the success was the length of the simulated sequences.

The selected sequences are phylogenetically diverse

For homologous DNA sequences, increasing the amount of elapsed time since they shared
a common ancestor increases their genetic distance due to time-dependent accumulation
of sequence changes. We expect that the JSD between two sequences will also increase
proportional to the time since they last shared a common ancestor. We therefore pose the
null hypothesis that if JSD is not informative, then the minimum pairwise genetic distance
amongst 𝑛 sequences chosen by diverse_seq will be approximately equal to the minimum
pairwise genetic distance between a random selection of 𝑛 sequences. Under the alternate
hypothesis that JSD is informative, the minimum genetic distance between sequences chosen by
diverse_seq will be larger than between randomly selected sequences. We test this hypothesis
using a resampling statistic (Sokal & Rohlf, 1995, p. 808), estimating the probability of the
algorithmic choice being consistent with the null hypothesis. This probability is calculated as
the proportion of 1000 randomly selected sets of sequences whose minimum genetic distance
was greater or equal to that obtained from the sequences chosen by dvs max. We further
summarised the performance of the dvs commands as the percentage of loci which gave a
𝑝-value less than 0.05. A bigger percentage is better.

We addressed the above hypothesis using 185 alignments of protein coding DNA sequences
from the following 31 mammals: Alpaca, Armadillo, Bushbaby, Cat, Chimp, Cow, Dog, Dolphin,
Elephant, Gorilla, Hedgehog, Horse, Human, Hyrax, Macaque, Marmoset, Megabat, Microbat,
Mouse, Orangutan, Pig, Pika, Platypus, Rabbit, Rat, Shrew, Sloth, Squirrel, Tarsier, Tenrec
and Wallaby. The sequences were obtained from Ensembl.org release 113 (Harrison et al.,
2024) using ensembl-tui (Huttley, Ying, et al., 2025). We refer to this as the mammal
data set. In order to obtain genetic distances, the sequences were aligned using the cogent3

progressive aligner (Huttley, Caley, et al., 2025; Knight et al., 2007) and pairwise paralinear
distances were calculated (Huttley, Caley, et al., 2025; Lake, 1994).

The results of the analysis (Figure 4) indicated the sucess of dvs max in identifying genetically
diverse sequences was principally sensitive to the choice of 𝑘. While Figure 4(a) showed close
equivalence between the statistics, Figure 4(b) indicates the size of the selected set using the
standard deviation was systematically lower than for the coefficient of variation. The result
from the dvs nmost analysis, performed using the minimum set size argument given to dvs

max, is represented by the 𝐽𝑆𝐷(𝔽) statistic. An example of the phylogenetic placement of
selected sequences is shown in Figure 5.

Computational performance

Using random samples of whole microbial genomes from the 960 REFSOIL dataset (Choi et al.,
2017) we established that compute time was linear with respect to the number of sequences
(Figure 6). We further trialled the algorithm on the dataset of Zhu et al. (2019), which
consists of 10,560 whole microbial genomes. Using 10 cores on a MacBook Pro M2 Max,
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application of dvs prep followed by dvs nmost took 8’9” and 3’45” (to select 100 sequences)
respectively. The RAM memory per process was ~300MB.

Constructing trees from 𝑘-mers
We use the mammal dataset described above to evaluate the statistical performance of the
ctree method. All sequences were concatenated and a phylogenetic tree was estimated from
this alignment with different 𝑘-mer sizes and sketch sizes. The trees generated by dvs ctree

are compared to the maximum likelihood tree found by IQ-TREE2 (Minh et al., 2020) using a
general time-reversible model (Tavare, 1986) on the concatenated alignment.

The likelihood of the generated trees changes with 𝑘 (Figure 7). When 𝑘 ≤ 5, the 𝑘-mers are
non-unique (all mash-distances are zero) and the method generates a caterpillar tree. It is not
until 𝑘 = 8 when the caterpillar tree is statistically outperformed. As 𝑘 increases further, the
likelihood approaches that of IQ-TREE2 but plateaus before it at 𝑘 = 12. Figure 8 shows how
the likelihood of the generated trees changes as the sketch size increases for varying 𝑘 ≥ 8.

Sketch size also impacts on the tree likelihood. An upward trend with increasing sketch size
was evident with the likelihood approaching but not reaching that found by IQ-TREE2 on the
aligned data. For the best performing values of 𝑘, there was no benefit to increasing sketch
size beyond ~2,500.

Computational performance

While the time complexity of the standard algorithm for agglomerative clustering is 𝒪(𝑛3),
with respect to the number of sequences, the number of sequences is often small in comparison
to the sequence lengths. As such, it was found that the most time consuming step of the
algorithm was within the distance calculation. The pairwise distance calculation is done in two
steps. First, is constructing the MinHash sketch for each sequence (a subset of sketch size
𝑘-mers), followed by the computation of distances from these sketches (Ondov et al., 2016).
The expected runtime for constructing the MinHash sketch for a sequence is 𝒪(𝑙+𝑠⋅log 𝑠⋅log 𝑙)
where 𝑙 is the length of the sequence, and 𝑠 is the sketch size. This is linear with respect to
𝑙 when 𝑙 >> 𝑠. Hence, the time complexity for constructing all MinHash sketches is linear
with respect to the combined length of all sequences. The time complexity for calculating the
distance between two sequences from the MinHash sketch is 𝒪(𝑠). Hence, the time complexity
for calculating the pairwise distance matrix between all pairs of sequences from the sketches
is 𝒪(𝑠𝑛2). For suitable applications of this algorithm however, both the sketch size and the
number of sequences are numerically dominated by the combined length of the sequences.
Thus, the expected time to run the algorithm is linear with respect to the combined length of
the sequences. This has been verified empirically with the 960 REFSOIL dataset (Figure 9).
The figure shows that as the number of sequences grows (and hence the combined length
of the sequences), the time taken to construct the cluster tree grows linearly. When applied
to the full REFSOIL dataset using 10 cores on a MacBook Pro M2 Max, ctree took ~3.5
minutes.

Recommendations
For selecting representative sequences for large-scale analyses, we recommend use of the nmost

command line tool. The choice of 𝑘 should be guided by the maximum number of unique
𝑘-mers in a DNA sequence of length 𝐿, indicated as the result of the expression log(𝐿4 ).
For instance, 𝑘 ≈ 12 for bacterial genomes (which are of the order 106bp). For individual
protein coding genes, as Figure 4 indicates, 𝑘 = 6 for nmost gives a reasonable accuracy. For
estimating a phylogeny, we recommend 𝑘 = 12 and a sketch size of 3000.
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Availability
diverse-seq can be installed from the Python Package Index. The GitHub repository for
diverse-seq contains all the scripts used to generate the results in this work. The data sets
used in this work are available from Zenodo 10.5281/zenodo.15098583. The repository includes
a script for downloading these.

Figures

# A list of sequences converted into k-mer counts.

records: list[KmerSeq]

# Randomise the order of the records

shuffle(records)

# The size of the divergent set.

n: int

# SummedRecords sorts records by their delta-JSD. The record

# with the lowest delta-JSD is excluded from the N-1 set.

sr = SummedRecords.from_records(records[:n])

for r in records:

# Is JSD({N-1} & {r}) > JSD({N})?

if sr.increases_jsd(r):

# Create a new SummedRecords instance from {N-1} & {r}.

sr = sr.replaced_lowest(r)

Figure 1: The diverse-seq nmost algorithm selects the 𝑛 sequences that produce the largest JSD.
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# A list of sequences converted into k-mer counts.

records: list[KmerSeq]

shuffle(records)

# The minimum size of the divergent set.

min_size: int

# The maximum size of the divergent set.

max_size: int

sr = SummedRecords.from_records(records[:min_size])

for r in records:

if sr.increases_jsd(r):

# Adding r to the N-1 set increased JSD over sr.jsd.

# We define a new SummedRecords instance of {N} & {r}.

nsr = sr + r

# Has adding r increased the standard deviation?

sr = nsr if nsr.std > sr.std else sr.replaced_lowest(r)

if sr.size > max_size:

# We stay within the user specified set size

# by dropping the record with lowest delta-JSD.

sr = sr.dropped_lowest()

Figure 2: The diverse-seq max algorithm. This includes upper and lower bounds for the size of the
divergent set and amends the within-loop condition of nmost. The set size is increased when a record
that increases JSD also increases the standard deviation of 𝛿𝐽𝑆𝐷.
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Figure 3: Identification of representatives of known groups is affected by sequence length. dvs max

identified representatives of known groups in both balanced, and imbalanced pools. std(𝛿𝐽𝑆𝐷) and
cov(𝛿𝐽𝑆𝐷) are the standard deviation and coefficient of variation of 𝛿𝐽𝑆𝐷 respectively.
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Figure 4: The statistical performance of dvs max in recovering representative sequences is a function of
𝑘 and the chosen statistic. The minimum and maximum allowed set sizes were 5 and 30, respectively.
std dvs nmost is represented by 𝐽𝑆𝐷(𝔽) run with n=5. Trendlines were estimated using LOWESS
(Cleveland, 1979). (a) Significant % is the percentage of cases where dvs max was significantly better
(𝑝 − value ≤ 0.05) at selecting divergent sequences than a random selection process. (b) The mean and
standard deviations of the number of sequences selected by dvs max.
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Figure 5: Result of applying the dvs_max app to a single sequence alignment. The phylogenetic tree
was estimated using Neighbour-Joining (Saitou & Nei, 1987) from the pairwise paralinear distances
(Lake, 1994). The branch to the sequence selected by dvs_max are shown in red. See the plugin_demo

notebook for the code used to produce this figure.
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Figure 6: dvs max exhibits linear time performance with respect to the number of microbial genome
sequences. Three replicates were performed for each condition. For each repeat, sequences were randomly
sampled without replacement from the 960 REFSOIL microbial dataset (Choi et al., 2017).
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Figure 7: Statistical performance of the dvs_ctree app on the concatenated mammals alignment as the
𝑘-mer size increases. The likelihood of trees, represented as the log-likelihood (lnL), generated by the app
is compared to the maximum likelihood tree found by IQ-TREE2 (Minh et al., 2020). For large enough
sketch sizes, the likelihood approaches that of IQ-TREE2 and plateaus beyond a 𝑘-mer size of ~12.
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Figure 8: Statistical performance of the dvs_ctree app on the concatenated mammals alignment as the
sketch size increases. The likelihood of trees, represented as the log-likelihood (lnL), generated by the
app is compared to the maximum likelihood tree found by IQ-TREE2 (Minh et al., 2020). For optimal
𝑘-mer sizes, the likelihood approaches that of IQ-TREE2 and plateaus beyond a sketch size of ~2500.
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Figure 9: Computational performance of the dvs_ctree app on 960 REFSOIL microbial dataset using 8
cores. The wall time taken to run the algorithm grows linearly with respect to the number of sequences.

Tables
Table 1 Examples of Jensen-Shanon Divergence (JSD) for the relationship of nucleotide
frequencies between two sequences with 𝑘 = 1.
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Relationship seq1 seq2 JSD
Identical ATCG TCGA 0.0
No overlap AAAA TTTT 1.0
Intermediate ATCG ATCC 0.5
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