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Summary
jaxKAN is a JAX-based library for building and training Kolmogorov–Arnold Networks (KANs)
(Liu et al., 2024), built on Flax’s NNX (Heek et al., 2024) with Optax (DeepMind et al., 2020)
for optimization. It provides a broad selection of layer implementations - from the original KAN
design to more recent or efficient variants - and unifies them under a single interface. Beyond
basic model instance definition and training, jaxKAN supports class-inherent adaptive training
methods (e.g., grid updates) and provides utilities that address performance limitations in
the original KAN framework. KANs from jaxKAN can be used in any setting where standard
multilayer perceptrons (MLPs) would otherwise be employed as the underlying architecture,
although the library includes specialized utilities for adaptive Partial Differential Equation
(PDE) solving tasks, thus placing emphasis on scientific applications with Physics-Informed
Kolmogorov-Arnold Networks (PIKANs) (Shukla et al., 2024).

Statement of need
The recent introduction of KANs (Liu et al., 2024) in machine learning provided an alternative
to traditional MLPs by making the network activation functions trainable, through expansions
in terms of basis functions - originally B-splines. This novel idea proved to be effective across
diverse applications, from engineering to scientific computing. Consequently, KANs were
extended to incorporate alternative basis functions, such as polynomial (Sidharth et al., 2024)
or trigonometric (Gist Noesis, 2024) functions. Moreover, more efficient architectures were
proposed to overcome performance bottlenecks in the original design (Blealtan, 2024). As a
result, a growing body of research has explored new ways to build, refine and utilize KANs, yet
a comprehensive, high-performance software framework that integrates these ideas under one
roof has been lacking.

Existing libraries only partially address this need. For instance, pykan (Liu, 2024), the original
PyTorch-based (Paszke et al., 2019) KAN implementation, does not provide expandability
to multiple layer types. Similarly, frameworks like NeuroMANCER (Drgona et al., 2023), while
valuable for physics-informed applications, restrict KAN usage mainly to scientific computing
tasks via the use of high-level APIs, thus limiting their applicability for other types of problems
or low-level integration into novel deep learning architectures. Additionally, while decentralized
repositories exist for individual KAN layer types, there is no unified approach to constructing and
training KANs, making it challenging to combine them into hybrid architectures or incorporate
them into broader workflows. This fragmented landscape perpetuates the tendency towards
assembling custom, case-specific solutions by researchers and practitioners.

jaxKAN fills this gap by providing a JAX-native codebase that encompasses multiple KAN layer
types, from the original B-spline-based approach to alternative variants. Through its unified
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interface, users can not only choose from various basis expansions but also utilize built-in
adaptive routines - such as grid updates, adaptive state transitions, or basis order extension -
to tackle problems where static representations underperform. Moreover, it delivers specialized
utilities for the adaptive training of PIKANs, a field where KANs have proven to be equally or
even more efficient than MLPs in several occasions (Rigas et al., 2024; Shukla et al., 2024).
At the time of writing, jaxKAN has been used in a series of academic works relevant to PDE
problems (Howard, Jacob, Murphy, et al., 2024; Howard, Jacob, & Stinis, 2024; Jacob et al.,
2024; Rigas et al., 2024), and has showcased significantly faster performance compared to the
original pykan implementation (Rigas et al., 2024).

Core Functionality
In the following, a brief discussion on the core functionality of jaxKAN is provided.

Layer Selection
In jaxKAN, KANs are built as instances of the KAN class, which comprises one or more
Kolmogorov–Arnold layers. These layers are defined within the jaxkan.layers module, which
currently includes five types:

• base: the original B-spline-based layer.

• spline: the efficient variant of the original B-spline-based layer (Blealtan, 2024).

• cheby: a layer using Chebyshev polynomials.

• mod-cheby: a layer using Chebyshev polynomials without incorporating trigonometric
functions for their calculation (Shukla et al., 2024).

• fourier: a layer utilizing sines and cosines as basis functions.

While these cover the most commonly used basis functions, the library will remain under active
development, aiming to add further variants as research continues and identifies promising
new options.

Network Methods
Each KAN instance provides three primary methods: initialization for customizing layer
parameters, a forward pass for passing inputs through the network, and an update_grids

method for in-place adjustments to each layer’s grid. In particular, the update_grids method
can be called during training with a new grid size as its argument to extend the network’s
current grid and subsequently adapt the extended grid to the training data. Although grid
updates are naturally interpreted in spline-based layers, they also extend to other types: for
Chebyshev layers, the method increases the degree of the polynomial basis functions, while
in Fourier layers the method adds more terms to the Fourier sums. Notably, this method
requires a technique to solve batched least-squares problems in parallel - an operation currently
not supported natively by JAX libraries but implemented internally in jaxKAN for optimal
performance.

PIKAN utilities
Beyond its low-level KAN functionality, jaxKAN supplies dedicated utilities for PIKANs. Users
wishing to fine-tune every detail can extend the KAN class to their own needs, as illustrated in
the documentation’s tutorials. Alternatively, a higher-level train_PIKAN function automates
the end-to-end adaptive training loop, allowing a PIKAN to solve a forward PDE problem with
minimal overhead.
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Case Study
As a case study, the Allen-Cahn equation, defined by

𝜕𝑢
𝜕𝑡

− 𝐷𝜕2𝑢
𝜕𝑥2 + 5 (𝑢3 − 𝑢) = 0, (1)

for 𝐷 = 10−3 in the Ω = [0, 1] × [−1, 1] domain, subject to the boundary conditions

𝑢 (𝑡 = 0, 𝑥) = 𝑥2 cos (𝜋𝑥) ,

𝑢 (𝑡, 𝑥 = −1) = 𝑢 (𝑡, 𝑥 = 1) = −1,

is solved, by training a network of spline layers for 5 ⋅ 104 epochs.

Figure 1: Upper row: reference solution to Equation 1. Middle row: approximation by vanilla PIKAN
(left) and adaptive PIKAN (right). Lower row: absolute errors relative to the reference solution.

The reference solution to Equation 1 is depicted in the upper row of Figure 1; since the
Allen-Cahn equation does not have an analytical solution, the reference solution used by Wu et
al. (2023) is adopted herein. The plots in the middle row of Figure 1 depict two approximate
solutions, corresponding to the results obtained after training a vanilla PIKAN, i.e., a PIKAN
trained without adopting adaptive techniques, (left) and an adaptively trained PIKAN (right).
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Finally, the lower row of Figure 1 showcases the absolute error corresponding to each PIKAN’s
approximation, relative to the reference. This example highlights the benefits of adaptive
training, as the vanilla PIKAN fails to capture the details of the reference solution, especially
in the 𝑡 ≥ 0.3 region.
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