The Journal of Open Source Software

DOI: 10.21105/joss.07831

Software
= Review 0
= Repository &
= Archive 7

Editor: Patrick Diehl @@
Reviewers:

= @gassmoeller

= @chennachaos

Submitted: 05 November 2024
Published: 18 August 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

Underworld3: Mathematically Self-Describing
Modelling in Python for Desktop, HPC and Cloud

2* " Julian Giordani ©®3, Matt Knepley ©*,
! Thyagarajulu Gollapalli ©®2, Neng

1*9 John Mansour

5, Juan Carlos Graciosa
1

Louis Moresi
Ben Knight
Lu®?!, and Romain Beucher

1 Research School of Earth Sciences, Australian National University, Canberra, Australia 2 School of
Earth, Atmospheric & Environmental Science, Monash University 3 University of Sydney, Sydney,
Australia 4 Computer Science and Engineering, University at Buffalo 5 Curtin University, Perth, Australia
q Corresponding author * These authors contributed equally.

Summary

Underworld3 is a finite element, geophysical-fluid-dynamics modelling framework designed
to be both straightforward to use and highly scalable to peak high-performance computing
environments. It implements the Lagrangian-particle finite element methodology outlined in
Moresi et al. (2003).

Underworld3 inherits the design patterns of earlier versions of underworld including: (1) A
python user interface that is inherently safe for parallel computation. (2) A symbolic interface
based on sympy that allows users to construct and simplify combinations of mathematical
functions, unknowns and the spatial gradients of unknowns on the fly. (3) Interchangeable
Lagrangian, Semi-Lagrangian and Eulerian time derivatives with symbolic representations
wrapping the underlying implementation. (4) Fast, robust, parallel numerical solvers based
on PETSc (Balay et al., 2024) and petsc4py (Dalcin et al., 2011), (5) Flexible, Lagrangian
“particle” swarms for handling transport-dominated unknowns that are fully interchangeable
with other data-types and can also be treated as symbolic quantities. (6) Unstructured and
adaptive meshing that is fully compatible with the symbolic framework.

The symbolic forms in (2,3) are used to construct a finite element representation using sympy
(Meurer et al., 2017) and cython (Behnel et al., 2011). These forms are just-in-time (JIT)
compiled as C functions libraries and pointers to these libraries are given to PETSc to describe
the finite element weak forms (surface and volume integrals), Jacobian derivatives and boundary
conditions.

Users of underworld3 typically develop python scripts within jupyter notebooks and, in this
environment, underworld3 provides introspection of its native classes both as python objects
as well as mathematical ones. This allows symbolic prototyping and validation of PDE solvers
in scripts that can immediately be deployed in a parallel HPC environment.

Statement of need

Typical problems in geodynamics usually require computing material deformation, damage
evolution, and interface tracking in the large-deformation limit. These are typically not well
supported by standard engineering finite element simulation codes. Underworld is a python
software framework that is intended to solve geodynamics problems that sit at the interface
between computational fluid mechanics and solid mechanics (often known as complex fluids).

Moresi et al. (2025). Underworld3: Mathematically Self-Describing Modelling in Python for Desktop, HPC and Cloud. Journal of Open Source 1
Software, 10(112), 7831. https://doi.org/10.21105/joss.07831.

https://orcid.org/0000-0003-3685-174X
https://orcid.org/0000-0001-5865-1664
https://orcid.org/0000-0003-4515-9296
https://orcid.org/0000-0002-2292-0735
https://orcid.org/0000-0001-7919-2575
https://orcid.org/0000-0003-0817-354X
https://orcid.org/0000-0001-9394-4104
https://orcid.org/0000-0001-9424-2315
https://orcid.org/0000-0003-3891-5444
https://doi.org/10.21105/joss.07831
https://github.com/openjournals/joss-reviews/issues/7831
https://github.com/underworldcode/underworld3
https://doi.org/10.5281/zenodo.16812088
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/gassmoeller
https://github.com/chennachaos
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07831

The Journal of Open Source Software

It does so by putting Lagrangian and Eulerian variables on an equal footing at both the user
and computational levels.

Underworld is built around a general, symbolic partial differential equation solver but provides
template forms to solve common geophysical fluid dynamics problems such as the Stokes
equation for mantle convection, subduction-zone evolution, lithospheric deformation, glacial
isostatic adjustment, ice flow; Navier-Stokes equations for finite Prandtl number fluid flow and
short-timescale, viscoelastic deformation; and Darcy Flow for porous media problems including
groundwater flow and contaminant transport.

These problems have a number of defining characteristics: geomaterials are non-linear, vis-
coelastic/plastic and have a propensity for strain-dependent softening during deformation;
strain localisation is very common as a consequence. Geological structures that we seek to
understand are often emergent over the course of loading and are observed in the very-large
deformation limit. Material properties have strong spatial gradients arising from pressure and
temperature dependence and jumps of several orders of magnitude resulting from material
interfaces.

underworld3 automatically handles much of the complexity of combining the non-linearities in
rheology, boundary conditions and time-discretisation, forming their derivatives, and simplifying
expressions to generate an efficient, parallel PETSc script. underworld3 provides a textbook-like
mathematical experience for users who are confident in understanding physical modelling.
A number of equation-system templates are provided for typical geophysical fluid dynamics
problems such as Stokes-flow, Navier-Stokes-flow, and Darcy flow which provide both usage
and mathematical documentation at run-time.

Mathematical Framework

The symbolic layer of underwor1d3 works with the “strong form" of a problem which is typically
how the governing equations are derived and disseminated in publications and textbooks. The
finite element method is based on a corresponding weak or variational form Zienkiewicz et al.
(2013).

PETSc provides a template form for the automatic generation of weak forms (see Knepley et al.,
2013). We start from the strong-form of the problem which is defined through the functional
, that expresses the balance between fluxes (F'(u, Vu)), forces, f(u, Vu), and unknowns u:

F(u) ~V - F(u,Vu) — f(u,Vu) =0 (1)

S

The discrete weak form and its Jacobian derivative would then be expressed through the related
functional 7, as follows:

Foy(u) ~ > el | BTW f(u, Vu?) + > DIWF*(u, Vus) | =0 (2)
e k
T
=Sl 57 om W GHo S B e @

e

Here € is the element restriction operator; B is the matrix of basis function derivatives and
D is the constitutive matrix that, together, describe the relation between the unknowns and
the flux. ¢ indicates that the values are determined at a set of quadrature points, and Wis a
diagonal matrix of weights for these points.

The symbolic representation of the strong-form that is encoded in underworld3 is:

[Du/Dt] -V [U(u, Vu,x,t)] - [H(u,Vu,x,t)] =0 (4)

Moresi et al. (2025). Underworld3: Mathematically Self-Describing Modelling in Python for Desktop, HPC and Cloud. Journal of Open Source 2
Software, 10(112), 7831. https://doi.org/10.21105/joss.07831.

https://doi.org/10.21105/joss.07831

The Journal of Open Source Software

Here H represents sources and sinks of u, and Du/Dt is the material time derivative of
u. The time derivatives of the unknowns are not present in the PETSc template but, after
time-discretisation, they produce terms that are combinations of fluxes and flux history terms
(which combine with o to contribute to F) and forces (which combine with h to contribute to
f). The explicit time / position dependence in o is to highlight potential changes to boundary
conditions or constitutive properties.

In underworld3, the user interacts with the time derivatives explicitly, and provides strong-form
expressions for the template (4). Sympy automatically gathers all the flux-like terms and all the
force-like terms into the form required by the PETSc template. All evaluations, derivatives and
simplifications of functions in the underwor1d3 symbolic layer are deferred until final assembly
of the PETSc template and the compilation of the C functions.

The main benefits of combining sympy with the PETSc weak form template is a user environment
that 1) provides symbolic, mathematical introspection, particularly in the context of Jupyter
notebooks; 2) eliminates much of the python or C coding required for complex constitutive
models; 3) eliminates any need for users to compute derivatives for the Newton solvers in
PETSc.

State of the Field

Underworld3 is one among a small number of codes for studying Earth deformation on medium
to long geological time-scales. Early geodynamics codes, of which there were too many to
recite individually, were highly specialised for specific tasks with little flexibility for user-defined
problems. A subsequent generation of codes, currently in use, was built around generic partial
differential equation solvers with scriptable interfaces.

These include: Aspect (C+ plugin architecture: Heister et al., 2017), Underworld 1 and 2 (xml
object composition / python scripting respectively, Mansour et al., 2020; Moresi et al., 2007),
Fluidity (xml combined with python scripting, Davies et al., 2011), Milamin (Matlab front end,
Dabrowski et al., 2008), LaMEM (julia scripting Kaus et al., 2024), TerraFERMA (Unified
Form Language, Wilson et al., 2017), GAdopt (Unified Form Language / python Davies et al.,
2022).

Underworld3 uses python and the python package sympy as the scripting interface that overlies
the generic partial differential equation layer. The advantage of sympy is that it is a fully
featured symbolic algebra package which allows much of the logic of the mathematical problem
description to be defined symbolically and dynamically rather than as static relationships
between objects. It also provides deep, mathematical introspection when developing and
debugging models.

Discussion

The aim of underworld3 is to provide strong support to users in developing sophisticated
mathematical models, and provide the ability to interrogate those models during development
and at run-time. Underworld3 encodes the mathematical structure of the equations it solves
and will display, in a publishable mathematical form, the derivations and simplifications that it
makes as it sets up the numerical solution.

Despite this symbolic, interactive layer, underworld3 python scripts are inherently-parallel
codes that seamlessly deploy as scripts in a high-performance computing parallel environment
with very little performance overhead.

Underworld3 documentation is accessible in a rich, mathematical format within jupyter note-
books for model development and analysis but is also incorporated into the APl documentation
in the same format.

Moresi et al. (2025). Underworld3: Mathematically Self-Describing Modelling in Python for Desktop, HPC and Cloud. Journal of Open Source 3
Software, 10(112), 7831. https://doi.org/10.21105/joss.07831.

https://doi.org/10.21105/joss.07831

The Journal of Open Source Software

Acknowledgements

AuScope provides direct support for the core development team behind the underworld codes
and the underworld cloud suite of tools. AuScope is funded by the Australian Government
through the National Collaborative Research Infrastructure Strategy, NCRIS.

The development and testing of our codes is also supported by computational resources
provided by the Australian Government through the National Computing Infrastructure (NCI)
under the National Computational Merit Allocation Scheme (project m18). This work was also
supported by resources provided by the Pawsey Supercomputing Research Centre's Setonix
Supercomputer, with funding from the Australian Government and the Government of Western
Australia.

The Australian Research Council (ARC) supported the development of novel algorithms,
computational methods and applications under the Discovery Project and Linkage Project
programs. AuScope funding was used to make these methods widely and freely available
in the underworld codes. Direct support for Underworld was provided by ARC Industrial
Transformation Research Hub Program (The Basin Genesis Hub).

References

Balay, S., Abhyankar, S., Adams, M., Benson, S., Brown, J., Brune, P., Buschelman, K.,
Constantinescu, E., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W.,
Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M., .. Zhang, J.
(2024). PETSc/TAO Users Manual V.3.21 (ANL-21/39-Rev-3.21, 2337606, 188499; pp.
ANL-21/39-Rev-3.21, 2337606, 188499). https://doi.org/10.2172/2337606

Bathe, K.-J. (2008). Finite Element Method. In B. W. Wah (Ed.), Wiley Encyclopedia
of Computer Science and Engineering (p. ecsel59). John Wiley & Sons, Inc. https:
//doi.org/10.1002/9780470050118.ecse159

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011).
Cython: The best of both worlds. Computing in Science & Engineering, 13(2), 31-39.
https://doi.org/10.1109/mcse.2010.118

Dabrowski, M., Krotkiewski, M., & Schmid, D. W. (2008). MILAMIN: MATLAB-based finite
element method solver for large problems. Geochem Geophys Geosyst, 9(4), 2007GC001719.
https://doi.org/10.1029/2007GC001719

Dalcin, L. D., Paz, R. R, Kler, P. A., & Cosimo, A. (2011). Parallel distributed computing
using Python. Advances in Water Resources, 34(9), 1124-1139. https://doi.org/10.1016/
j.advwatres.2011.04.013

Davies, D. R., Kramer, S. C., Ghelichkhan, S., & Gibson, A. (2022). Towards automatic finite-
element methods for geodynamics via Firedrake. Geosci. Model Dev., 15(13), 5127-5166.
https://doi.org/10.5194/gmd-15-5127-2022

Davies, D. R., Wilson, C. R., & Kramer, S. C. (2011). Fluidity: A fully unstructured
anisotropic adaptive mesh computational modeling framework for geodynamics: FLUIDITY-
MODELING GEODYNAMICAL FLOWS. Geochem. Geophys. Geosyst., 12(6), n/a—n/a.
https://doi.org/10.1029/2011GC003551

Heister, T., Dannberg, J., Gassméller, R., & Bangerth, W. (2017). High accuracy mantle

convection simulation through modern numerical methods — Il: Realistic models and
problems. Geophysical Journal International, 210(2), 833-851. https://doi.org/10.1093/
gji/ggx195

Hughes, T. J. R. (1987). The finite element method: Linear static and dynamic finite element
analysis (1. Dr.). Prentice Hall. https://doi.org/10.1016,/0045-7825(87)90013-2

Moresi et al. (2025). Underworld3: Mathematically Self-Describing Modelling in Python for Desktop, HPC and Cloud. Journal of Open Source 4
Software, 10(112), 7831. https://doi.org/10.21105/joss.07831.

https://doi.org/10.48569/18sb-8s43
https://doi.org/10.48569/18sb-8s43
https://doi.org/10.2172/2337606
https://doi.org/10.1002/9780470050118.ecse159
https://doi.org/10.1002/9780470050118.ecse159
https://doi.org/10.1109/mcse.2010.118
https://doi.org/10.1029/2007GC001719
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.5194/gmd-15-5127-2022
https://doi.org/10.1029/2011GC003551
https://doi.org/10.1093/gji/ggx195
https://doi.org/10.1093/gji/ggx195
https://doi.org/10.1016/0045-7825(87)90013-2
https://doi.org/10.21105/joss.07831

The Journal of Open Source Software

Kaus, B., Popov, A., Garrett_Ito, Spang, A., greuber, Ibragimov, |., xinxinwang01, thomasAmor-
row, Pusok, A., APiccolo89, ChristianSchuler, Sanan, P., sasbrune, Yanglianfeng2015,
Bauville, A., & birand-zz. (2024). LaMEM. Zenodo. https://doi.org/10.5281/ZENODO.
10718860

Knepley, M. G., Brown, J., Rupp, K., & Smith, B. F. (2013). Achieving High Performance
with Unified Residual Evaluation. arXiv:1309.1204 [Cs]. https://arxiv.org/abs/1309.1204

Mansour, J., Giordani, J., Moresi, L., Beucher, R., Kaluza, O., Velic, M., Farrington, R.,
Quenette, S., & Beall, A. (2020). Underworld2: Python Geodynamics Modelling for
Desktop, HPC and Cloud. JOSS, 5(47), 1797. https://doi.org/10.21105/joss.01797

Meurer, A., Smith, C. P., Paprocki, M., Certik, O., Kirpichev, S. B., Rocklin, M., Kumar,
A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., .. Scopatz, A.
(2017). SymPy: Symbolic computing in Python. PeerJ Computer Science, 3, €103.
https://doi.org/10.7717 /peerj-cs.103

Moresi, L., Dufour, F., & Mihlhaus, H.-B. (2003). A Lagrangian integration point finite
element method for large deformation modeling of viscoelastic geomaterials. Journal
of Computational Physics, 184(2), 476—497. https://doi.org/10.1016/50021-9991(02)
00031-1

Moresi, L., Quenette, S., Lemiale, V., Mériaux, C., Appelbe, B., & Mihlhaus, H.-B. (2007).
Computational approaches to studying non-linear dynamics of the crust and mantle. Physics
of the Earth and Planetary Interiors, 163(1), 69-82. https://doi.org/10.1016/j.pepi.2007.
06.009

Wilson, C. R., Spiegelman, M., & Van Keken, P. E. (2017). Terra FERMA : The T ransparent
F inite E lement R apid M odel A ssembler for multiphysics problems in E arth sciences.
Geochem Geophys Geosyst, 18(2), 769-810. https://doi.org/10.1002/2016GC006702

Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). The finite element method: Its
basis and fundamentals (Seventh edition). Elsevier, Butterworth-Heinemann. https:
//doi.org/10.1016/C2009-0-24909-9

Moresi et al. (2025). Underworld3: Mathematically Self-Describing Modelling in Python for Desktop, HPC and Cloud. Journal of Open Source 5
Software, 10(112), 7831. https://doi.org/10.21105/joss.07831.

https://doi.org/10.5281/ZENODO.10718860
https://doi.org/10.5281/ZENODO.10718860
https://arxiv.org/abs/1309.1204
https://doi.org/10.21105/joss.01797
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1016/S0021-9991(02)00031-1
https://doi.org/10.1016/S0021-9991(02)00031-1
https://doi.org/10.1016/j.pepi.2007.06.009
https://doi.org/10.1016/j.pepi.2007.06.009
https://doi.org/10.1002/2016GC006702
https://doi.org/10.1016/C2009-0-24909-9
https://doi.org/10.1016/C2009-0-24909-9
https://doi.org/10.21105/joss.07831

	Summary
	Statement of need
	Mathematical Framework

	State of the Field
	Discussion
	Acknowledgements
	References

