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Summary

Underworld3 is a finite element, geophysical-fluid-dynamics modelling framework designed
to be both straightforward to use and highly scalable to peak high-performance computing
environments. It implements the Lagrangian-particle finite element methodology outlined in
Moresi et al. (2003).

Underworld3 inherits the design patterns of earlier versions of underworld including: (1) A
python user interface that is inherently safe for parallel computation. (2) A symbolic interface
based on sympy that allows users to construct and simplify combinations of mathematical
functions, unknowns and the spatial gradients of unknowns on the fly. (3) Interchangeable
Lagrangian, Semi-Lagrangian and Eulerian time derivatives with symbolic representations
wrapping the underlying implementation. (4) Fast, robust, parallel numerical solvers based
on PETSc (Balay et al., 2024) and petsc4py (Dalcin et al., 2011), (5) Flexible, Lagrangian
“particle” swarms for handling transport-dominated unknowns that are fully interchangeable
with other data-types and can also be treated as symbolic quantities. (6) Unstructured and
adaptive meshing that is fully compatible with the symbolic framework.

The symbolic forms in (2,3) are used to construct a finite element representation using sympy
(Meurer et al., 2017) and cython (Behnel et al., 2011). These forms are just-in-time (JIT)
compiled as C functions libraries and pointers to these libraries are given to PETSc to describe
the finite element weak forms (surface and volume integrals), Jacobian derivatives and boundary
conditions.

Users of underworld3 typically develop python scripts within jupyter notebooks and, in this
environment, underworld3 provides introspection of its native classes both as python objects
as well as mathematical ones. This allows symbolic prototyping and validation of PDE solvers
in scripts that can immediately be deployed in a parallel HPC environment.

Statement of need

Typical problems in geodynamics usually require computing material deformation, damage
evolution, and interface tracking in the large-deformation limit. These are typically not well
supported by standard engineering finite element simulation codes. Underworld is a python
software framework that is intended to solve geodynamics problems that sit at the interface
between computational fluid mechanics and solid mechanics (often known as complex fluids).
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It does so by putting Lagrangian and Eulerian variables on an equal footing at both the user
and computational levels.

Underworld is built around a general, symbolic partial differential equation solver but provides
template forms to solve common geophysical fluid dynamics problems such as the Stokes
equation for mantle convection, subduction-zone evolution, lithospheric deformation, glacial
isostatic adjustment, ice flow; Navier-Stokes equations for finite Prandtl number fluid flow and
short-timescale, viscoelastic deformation; and Darcy Flow for porous media problems including
groundwater flow and contaminant transport.

These problems have a number of defining characteristics: geomaterials are non-linear, vis-
coelastic/plastic and have a propensity for strain-dependent softening during deformation;
strain localisation is very common as a consequence. Geological structures that we seek to
understand are often emergent over the course of loading and are observed in the very-large
deformation limit. Material properties have strong spatial gradients arising from pressure and
temperature dependence and jumps of several orders of magnitude resulting from material
interfaces.

underworld3 automatically handles much of the complexity of combining the non-linearities in
rheology, boundary conditions and time-discretisation, forming their derivatives, and simplifying
expressions to generate an efficient, parallel PETSc script. underworld3 provides a textbook-like
mathematical experience for users who are confident in understanding physical modelling.
A number of equation-system templates are provided for typical geophysical fluid dynamics
problems such as Stokes-flow, Navier-Stokes-flow, and Darcy flow which provide both usage
and mathematical documentation at run-time.

Mathematical Framework

The symbolic layer of underwor1d3 works with the “strong form" of a problem which is typically
how the governing equations are derived and disseminated in publications and textbooks. The
finite element method is based on a corresponding weak or variational form Zienkiewicz et al.
(2013).

PETSc provides a template form for the automatic generation of weak forms (see Knepley et al.,
2013). We start from the strong-form of the problem which is defined through the functional
, that expresses the balance between fluxes (F'(u, Vu)), forces, f(u, Vu), and unknowns u:

F(u) ~V - F(u,Vu) — f(u,Vu) =0 (1)
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The discrete weak form and its Jacobian derivative would then be expressed through the related
functional 7, as follows:

Foy(u) ~ > el | BTW f(u, Vu?) + > DIWF*(u, Vus) | =0 (2)
e k
T
=Sl 57 om W GHo S B e @

e

Here € is the element restriction operator; B is the matrix of basis function derivatives and
D is the constitutive matrix that, together, describe the relation between the unknowns and
the flux. ¢ indicates that the values are determined at a set of quadrature points, and Wis a
diagonal matrix of weights for these points.

The symbolic representation of the strong-form that is encoded in underworld3 is:

[Du/Dt] -V [U(u, Vu,x,t)] - [H(u,Vu,x,t)] =0 (4)
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Here H represents sources and sinks of u, and Du/Dt is the material time derivative of
u. The time derivatives of the unknowns are not present in the PETSc template but, after
time-discretisation, they produce terms that are combinations of fluxes and flux history terms
(which combine with o to contribute to F) and forces (which combine with h to contribute to
f). The explicit time / position dependence in o is to highlight potential changes to boundary
conditions or constitutive properties.

In underworld3, the user interacts with the time derivatives explicitly, and provides strong-form
expressions for the template (4). Sympy automatically gathers all the flux-like terms and all the
force-like terms into the form required by the PETSc template. All evaluations, derivatives and
simplifications of functions in the underwor1d3 symbolic layer are deferred until final assembly
of the PETSc template and the compilation of the C functions.

The main benefits of combining sympy with the PETSc weak form template is a user environment
that 1) provides symbolic, mathematical introspection, particularly in the context of Jupyter
notebooks; 2) eliminates much of the python or C coding required for complex constitutive
models; 3) eliminates any need for users to compute derivatives for the Newton solvers in
PETSc.

State of the Field

Underworld3 is one among a small number of codes for studying Earth deformation on medium
to long geological time-scales. Early geodynamics codes, of which there were too many to
recite individually, were highly specialised for specific tasks with little flexibility for user-defined
problems. A subsequent generation of codes, currently in use, was built around generic partial
differential equation solvers with scriptable interfaces.

These include: Aspect (C+ plugin architecture: Heister et al., 2017), Underworld 1 and 2 (xml
object composition / python scripting respectively, Mansour et al., 2020; Moresi et al., 2007),
Fluidity (xml combined with python scripting, Davies et al., 2011), Milamin (Matlab front end,
Dabrowski et al., 2008), LaMEM (julia scripting Kaus et al., 2024), TerraFERMA (Unified
Form Language, Wilson et al., 2017), GAdopt (Unified Form Language / python Davies et al.,
2022).

Underworld3 uses python and the python package sympy as the scripting interface that overlies
the generic partial differential equation layer. The advantage of sympy is that it is a fully
featured symbolic algebra package which allows much of the logic of the mathematical problem
description to be defined symbolically and dynamically rather than as static relationships
between objects. It also provides deep, mathematical introspection when developing and
debugging models.

Discussion

The aim of underworld3 is to provide strong support to users in developing sophisticated
mathematical models, and provide the ability to interrogate those models during development
and at run-time. Underworld3 encodes the mathematical structure of the equations it solves
and will display, in a publishable mathematical form, the derivations and simplifications that it
makes as it sets up the numerical solution.

Despite this symbolic, interactive layer, underworld3 python scripts are inherently-parallel
codes that seamlessly deploy as scripts in a high-performance computing parallel environment
with very little performance overhead.

Underworld3 documentation is accessible in a rich, mathematical format within jupyter note-
books for model development and analysis but is also incorporated into the APl documentation
in the same format.
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