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Summary
Learning optimal assignment of treatments is an important problem in economics, public health,
and related fields, particularly when faced with a variety of treatment strategies. The problem
arises, for example, in settings where randomized controlled trials (RCT) are conducted to
evaluate various behavioral science-informed interventions aimed at fostering behavior change
(Milkman, Gromet, et al., 2021). Such interventions have been studied across diverse domains,
including encouraging gym attendance and increasing vaccine uptake for influenza or COVID-19
(Dai et al., 2021; Milkman, Gromet, et al., 2021; Milkman, Patel, et al., 2021; Milkman
et al., 2022). While most studies focus on identifying interventions that perform best on
average, this approach often overlooks effect heterogeneity. Ignoring heterogeneity can be a
missed opportunity to tailor interventions for maximum effectiveness and may even exacerbate
disparities (Bryan et al., 2021). Subject-specific covariates, such as sociodemographics can be
harnessed to identify which interventions work best for different segments of the population,
allowing for more impactful intervention assignments. The rjaf package provides a user-friendly
implementation of the regularized joint assignment forest (RJAF) (Ladhania et al., 2023), a
regularized forest-type assignment algorithm based on greedy recursive partitioning (Athey et
al., 2019) that shrinks effect estimates across treatment arms. The algorithm is augmented
by outcome residualization to reduce baseline variation, and employs a clustering scheme
(Hartigan & Wong, 1979) that combines treatment arms with consistently similar outcomes.
Personalized treatment learning is achieved by optimizing a regularized empirical analogue
of the expected outcome. The integration of R (R Core Team, 2024) and C++ (Stroustrup,
2013) substantially boosts computational efficiency in tree partitioning and aggregating. It
is especially suitable in RCT settings with numerous treatment arms and constrained sample
sizes, making it a powerful tool for learning personalized intervention strategies.

Statement of Need
There is an ever-growing literature at the intersection of machine learning and causal inference
attempting to address the problem of optimal treatment assignment through heterogeneous
treatment effect estimation (Athey et al., 2019; Athey & Imbens, 2016; Athey & Wager, 2021;
Hitsch & Misra, 2018; Sverdrup et al., 2020; Wager & Athey, 2018; Zhao et al., 2012; Xin Zhou
et al., 2017). Among them, the policytree approach (Sverdrup et al., 2020) pursues doubly
robust estimation that relies on the grf package, while the outcome (or residual) weighted
learning approach (Zhao et al., 2012; Xin Zhou et al., 2017) is based on support vector
machines. Other methods focus on maximizing the benefit (empirical welfare) from treatment
assignment (e.g., Kitagawa & Tetenov, 2018), or the chance of assigning an individual to an
optimal treatment arm (e.g., Murphy, 2005; Xuan Zhou et al., 2018). Most of these approaches
perform well with a limited number of treatment and control groups. A large number of arms
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renders the identification of best arm increasingly difficult, and assignments based on separate
arm-wise estimation are inefficient. Commonly used implementations such as the multi-arm
causal forest (implemented through the grf package) (Tibshirani et al., 2022) and random
forest (Wright & Ziegler, 2017) might lead to suboptimal assignment, particularly in settings
with high noise. By contrast, the RJAF (Ladhania et al., 2023) yields elevated empirical
outcome estimates closer to the optimal level from the oracle assignment than the multi-arm
causal forest approach in high noise settings, and performs at the same level in low-noise
ones. Despite the methodological advantage over existing approaches, the incorporation of
machine learning and causal inference techniques such as recursive tree partitioning, bootstrap
aggregating, and treatment arm clustering makes it challenging to implement the RJAF from
scratch even for well-trained data scientists. The rjaf is an open-source software package in R

and C++ that efficiently implements the RJAF, offering data scientists a user-friendly analytic
toolbox for learning personalized treatment rules in real-world settings.

Workflow
Figure 1 outlines the workflow of the rjaf package. The process begins with partitioning
the input data—consisting of outcomes, treatment arms, covariates, individual identifiers,
and optional probabilities of treatment assignment—into two parts, one for model training
and estimation, and the other is the held-out set on which personalized assignment rules are
obtained. The rjaf function first checks whether outcome residualization for reducing baseline
variation should be performed via the residualize function, using the resid argument. If
resid is set to TRUE (the default), a new column of residualized outcomes is added to the input
data and used for tree growing on the training set. Next, the rjaf function evaluates whether
treatment clustering should be performed on the training-estimation set during tree growing
using the clus.tree.growing argument. If clus.tree.growing is TRUE, an Rcpp function
is employed to estimate cross-validated counterfactual outcomes for the 𝐾 + 1 treatment
arms, after which k-means clustering is used to learn 𝑀 + 1 treatment arm clusters. The
optimal number of treatment clusters is determined using the elbow method. After clustering,
the Rcpp function is reapplied to the preprocessed data, with assignment forest fitted on
𝑀 + 1 treatment clusters and counterfactual outcomes estimated for the original 𝐾 + 1 arms.
If clus.tree.growing is FALSE, the Rcpp function is employed to estimate counterfactual
outcomes for the 𝐾 + 1 arms. Lastly, the Rcpp function is used to obtain optimal treatment
arms and predicted counterfactual outcomes under all treatment arms for individuals in the
held-out set.
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Figure 1: A sketch of the rjaf package.
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Figure 2 describes the RJAF algorithm. Tree growing begins by taking the training-estimation
data set as input, randomly splitting it into separate training and estimation subsets propor-
tionally by treatment arms (or clusters). Initially, utility is set at the root node, where optional
Horvitz–Thompson estimator-based inverse probability weighting (IPW) can be applied. A tree
is then grown via recursive partitioning of the training subset based on covariate splits. Each
potential split is generated by an internal Rcpp function, where regularization specified by the
lambda1 parameter can be performed along with IPW to calculate weighted average outcomes
by treatment arms or clusters. A potential split is retained if it meets three criteria: (1) each
child node contains at least the minimum number of units specified by the nodesize argument,
(2) the utility gain is at least eps times the empirical standard deviation of outcomes in the
entire input data, and (3) the child nodes have different optimal treatment arm (or cluster) as-
signments from the parent node. Recursive partitioning ends when no further splits meet these
criteria. Once terminal nodes are determined in the training subset, the learned splitting rules
are applied to the estimation subset to assign its units to the terminal nodes. Outcomes from
units in the estimation subset are used to calculate treatment-arm-specific average outcomes
for each terminal node, with optional regularization specified by the lambda2 parameter and
imputation controlled by impute. On the held-out data set, treatment-arm-specific outcomes
from the estimation subset are assigned to corresponding terminal nodes to achieve honest
outcome estimates, thus concluding the tree growing process. The final step is bootstrap
aggregation of a large number of trees, where the total number of trees is set by the ntree

parameter.
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Figure 2: A description of the RJAF algorithm.
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