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Summary
Analytic continuation extends the domain of a given complex-valued function to a broader
region in the complex plane. This technique is widely applied across various fields, including
quantum mechanical methods like the 𝐺𝑊 method and real-time propagation algorithms, to
analytically continue a function from the imaginary axis to the real axis.

In this work, we present the analytic continuation component of the GreenX library (GX-AC),
which provides a Fortran API for the use of Padé approximants with and without symmetry
constraints. The component uses the Thiele Padé algorithm to create Padé approximants and
uses multiple-precision floats in combination with a greedy algorithm to mitigate the numerical
instabilities commonly associated with fitting Padé approximants. The GX-AC component is
distributed under the Apache 2 license and freely available on GitHub.

Statement of need
Analytic continuation (AC) is used in different scientific fields where complex analysis is relevant
including mathematical function theory and engineering for solving differential equations
(Lope & Tahara, 2002). Another major application area is theoretical physics and chemistry,
particularly in fields such as quantum mechanics (Golze et al., 2019; Li et al., 2020) or quantum
field theory (Nekrasov, 2024). In the following, we discuss the four examples depicted in
Figure 1. The first example, shown in the top left of Figure 1, involves the application of
AC to model functions, which may include Gamma functions (Luke, 1975), Zeta functions
(Iriguchi & Watanabe, 2007), and others.

In quantum field theory, AC can be applied to the frequently arising, complex-valued Green’s
functions, like the Green’s function of the Hubbard model (Schött et al., 2016). However,
Green’s functions also appear in ab-initio many-body perturbation theory methods like the
𝐺𝑊 approximation. The 𝐺𝑊 method (Hedin, 1965) is considered the method of choice
for predicting band structures of solids as well as electron removal and addition energies of
molecules, as measured in direct and indirect photoemission experiments (Golze et al., 2019).
The complex-valued self energy is a central quantity in the 𝐺𝑊 method, computed as the
convolution of the Green’s function 𝐺 and the screened Coulomb interaction 𝑊. AC is a
frequently used tool for continuing the self energy from the imaginary to the real frequency
axis in conventional scaling 𝐺𝑊 implementations (Gonze et al., 2009; Ren et al., 2012; Van
Setten et al., 2015; Wilhelm & Hutter, 2017) and low-scaling implementations (Förster et
al., 2023; Förster & Visscher, 2020; Förster & Visscher, 2021b, 2021a; Graml et al., 2024;
Liu et al., 2016; Wilhelm et al., 2018, 2021). More recently, AC has also been applied to the
screened Coulomb interaction (Duchemin & Blase, 2020, 2021; Friedrich, 2019; Kehry et al.,
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2023; Kockläuner & Golze, 2025; Panadés-Barrueta & Golze, 2023; Samal & Voora, 2022;
Springer et al., 1998; Voora, 2020) to e.g. reduce the computational scaling associated with
core-level excitations (Panadés-Barrueta & Golze, 2023). The AC of a self energy Σ and a
screened Coulomb interaction 𝑊 are depicted as the second and third example in the bottom
panel of Figure 1.
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Figure 1: Application of the GX-AnalyticContinuation component to a model function with two poles
(top left), an RT-TDDFT UV-vis absorption spectrum (top right), the 𝐺𝑊 self energy (bottom left) and
the 𝐺𝑊 screened Coulomb interaction (bottom right). More information about the functions that are
presented here can be found on the website of the GX-AC component.

Our fourth and final example is the usage of AC in real-time propagation algorithms, such as
real-time time-dependent density functional theory (RT-TDDFT) (Li et al., 2020). RT-TDDFT
yields, for example, access to the absorption spectra of molecules and solids via the complex-
valued dynamic polarizability tensor. The resolution of the RT-TDDFT absorption spectrum
depends on the simulation length. It has been shown that applying Padé approximants to the
dynamic polarizability tensor is an effective strategy for achieving higher spectral resolution with
much shorter simulation times (Bruner et al., 2016; Mattiat & Luber, 2018). An illustrative
UV-vis absorption spectrum, with and without the use of AC, is shown in the top right of
Figure 1.

AC of analytic (holomorphic) functions is typically performed by approximating the function
with a rational function in one domain of the complex plane, typically along the imaginary axis.
According to the identity theorem, the resulting rational function can then be evaluated over a
broader domain of the complex plane, for example, along the real axis. Padé approximants
are an established choice for rational functions. Their flexibility enables the approximation of
functions with complicated pole structures (Golze et al., 2019). Padé approximants can be
expressed by the ratio of two polynomials with arbitrary order, or alternatively by a continued
fraction (Baker, 1975).

The GreenX library aims to provide a suite of common tools, such as AC, for electronic
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structure codes based on the 𝐺𝑊 method. The previously published first component of the
GreenX library is the TimeFrequency component (Azizi et al., 2023). It provides minimax time
and frequency grids for the random phase approximation (RPA) and 𝐺𝑊 methods that were
validated in a comprehensive benchmark study (Azizi et al., 2024). In this work we present the
second component of the GreenX library, the GX-AnalyticContinuation (GX-AC) component,
which has the Apache-2.0 license. It provides a Fortran API for analytic continuation using Padé
rational functions that can be easily integrated into other Fortran projects. The component
uses the Thiele reciprocal difference method (Baker, 1975; Milne-Thomson, 1933; Thiele,
1909) to obtain the Padé coefficients. Although the primary focus of the GreenX library are
𝐺𝑊-based methods, the GX-AC component is suitable for any application where AC with
Padé approximants can be used. Extensive benchmarks and the full documentation of GX-AC
component can be found on the component’s website.

Generating Padé approximants is prone to numerical instabilities caused by rounding errors that
are amplified in the numerous differences in the Thiele-Padé algorithm (Beach et al., 2000;
Cuyt et al., 1988; Graves-Morris, 1980; Jones & Thron, 1974). We employ two strategies to
address these numerical instabilities. The first approach is to use multiple precision floating
point arithmetic for the implementation of the Thiele algorithm, minimizing the numerical
noise caused by rounding errors. We use the GNU Multiple Precision (GMP) library (Granlund,
2015) to handle the multiple-precision floats. The advantage of this library is that it provides
highly optimized assembly code for most of the processors available. This approach allows us
to exceed the 128-bit precision limit typically supported by standard Fortran compilers. The
second strategy involves using a greedy algorithm for Thiele Padé approximants, that has been
validated in previous work (Celis, 2023, 2024; Panadés-Barrueta & Golze, 2023). The greedy
algorithm is used to rearrange the function arguments of the reference function in order to
make the model numerically more stable.

Another feature of the GX-AC component is to force the Padé model to exhibit a certain
symmetry. This ensures that the approximant has the same symmetry as the reference function
in the case that the symmetry of the reference function is known in advance, e.g. the screened
Coulomb interaction in the 𝐺𝑊 is an even function (Duchemin & Blase, 2020). Additionally,
the enforced symmetry helps to increase the quality of the Padé approximant because every
point of a given reference function also accounts for symmetrical equivalent points. Even, odd,
conjugate and anti-conjugate function symmetry is supported by the component at this point.

State of the field
To the best of the authors’ knowledge, there are no Padé AC implementations that provide
symmetry constraints and floating point precision beyond 128 bit, as the GX-AC component
does. An open-source project that provides a Fortran implementation is the Padé Approximants
repository by Johan Schött (JohanSchott, 2016). However, it uses the Beach algorithm (Beach
et al., 2000) in a quadruple precision implementation to generate Padé approximants and it
provides an executable binary, rather than a Fortran API. Additionally, several Python, Julia and
R implementations exist that offer an API in the specified language (Adler, 2015; bennosski,
2019; jjgoings, 2017; mjp98, 2022; Montmorency, 2014; Virtanen et al., 2020), but they do
not offer a Fortran or C API.
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