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Summary

Fluid systems are everywhere, from small-scale engineering problems to planetary- and larger-
scale systems (atmosphere, ocean, galactic gas clouds). These systems are often turbulent,
where motion is chaotic, unpredictable, and can only be characterized through statistical
analyses. Structure functions (SFs) are one such statistical analysis technique for turbulence
that requires the calculation of spatial differences in properties as a function of their separation
distance. By combining and then averaging these spatial differences, various types of SF
can be constructed to measure physical properties of fluid flow, such as heat and energy
transfers, energy density, intermittency, etc. However, calculating SFs is often a cumbersome
and computationally-intensive task tailored to the specific format of a given fluid dataset.
FLuidSF is a flexible Python package that can be used to diagnose and analyze various
physically-informative SFs from one-, two-, or three-dimensional fluid data sets.

Statement of need

FluidSF can construct an array of traditional and modern structure functions, and can be easily
modified to calculate user-defined SFs that utilize general fluid properties, including scalars
(e.g., vorticity, density) and vectors (e.g., velocity, magnetic field). FluidSF also includes
several tools to process data (e.g., array shifting, binning) and diagnose useful properties (e.g.,
advection) for SF analysis. The flexibility of this package enables geophysical, astrophysical, and
engineering applications such as: quantifying the energy cycles within Earth's ocean (Balwada
et al., 2022; J. Pearson et al., 2019), Earth’'s atmosphere (Lindborg, 1999), and Jupiter’s
atmosphere (Young & Read, 2017), diagnosing the intermittency of magnetohydrodynamic
plasma turbulence (Wan et al., 2016) and the scaling laws of idealized 3D turbulence (lyer et
al., 2020), or measuring the characteristics of ocean surface temperature (Schloesser et al.,
2016) or the anistropy of flow over rough beds (Coscarella et al., 2020).

Structure functions are constructed by averaging the correlations between spatial differences of
properties. For example, given an arbitrary scalar field (¢), we could calculate SFs such as this,

SFys(r) = 069 = [p(x + 1) — p(x)] [p(x + 1) — ¢(x)] (1)

where x denotes the position of a data point, d¢ denotes the spatial variation of ¢, and
the overline denotes an average over all positions (x). Structure functions depend on the
separation vector (r), and are often analyzed with an assumption of isotropic flow statistics
[SE(r) = SF(r = |r|)]. There are many types of physically useful structure functions. The
example above is a second-order scalar SF (i.e., it contains two & terms of the scalar ¢),
but additional physical insight can be gained from third-order and higher-order scalar SFs
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(three or more § terms), SFs that depend on vector fields such as velocity, and SFs that blend
information from multiple fields.

FLuldSF can utilize a variety of fluid data, including datasets with one-, two-, and three-
dimensional spatial data, as well as data from domains with periodic or non-periodic boundary
conditions. In addition to regular Cartesian-gridded data, the software also has some support
for non-uniform latitude-longitude grids (1D or 2D) but not for general curvilinear coordinates.
When computing SFs that blend information from multiple fields, FluidSF assumes all variables
are co-located, so care must be taken with staggered grids. Since FluldSF is written in Python,
any fluid data initialized and loaded as NumPy (Harris et al., 2020) arrays can be used to
calculate SFs. To demonstrate the flexibility of input data, Figure 1 shows several types of SF
calculated using FluidSF for a simulation of quasi-geostrophic turbulence in a periodic domain
using GeophysicalFlows.jl (Constantinou et al., 2021), while Figure 2 shows SFs calculated
from satellite observations of the ocean surface made by the NASA SWOT (Surface Waves
and Ocean Topography) satellite mission (Morrow et al., 2018).
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Figure 1: Various structure functions (SFs) calculated from a simulated 2D turbulent flow, visualized
through snapshots of the vorticity field (top left) and velocity field (bottom left). The right panels show
various SFs based on velocity (red lines) and vorticity (blue lines), including third-order and advective SFs
(top right) and traditional second-order SFs (bottom right). The results are from the top layer snapshot
of an anisotropic two-layer quasi-geostrophic simulation conducted with GeophysicalFlows.jl.

As demonstrated in Figure 1 and Figure 2, FluidSF can calculate a wide array of traditional
structure functions, including S’F¢¢ (Equation 1; where the scalar field in this case is vorticity w),

second- and third-order SFs of longitudinal velocity (SFy,; = (duy,)? and SFy;; = (dup)?;
where u; = u - #) and transverse velocity (SEpp and SFppp), and blended velocity-scalar
third-order SFs (SF;,,,, = duydwdw), in addition to novel advective SFs of velocity (ASF),
vorticity (ASF),) and scalars (B. Pearson et al., 2021, 2025). Advective SFs require fields of
the local advection, and FluidSF has a built-in function to compute these advection terms.
FluidSF can calculate SFs in specific separation directions (i.e., aligned with the Cartesian
co-ordinates, shown in Figure 2), and for 2D data it can diagnose maps showing how SFs
vary with the magnitude and orientation of the separation vector r (Figure 3). FluidSF also
includes tools to make the calculation and processing of SFs easier, such as array shifting,
diagnosis of the advection terms for novel SFs, decomposition of velocity into longitudinal
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(along-r; u;) and transverse (across-r; uy) components, and data binning based on separation

distance.
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Figure 2: Velocity-based SFs calculated from satellite observations of the ocean surface in the North
Atlantic. Maps of the inferred surface velocity from a satellite swath are shown in the top left. The
region of data used for SF calculations is indicated by the red box and magnified on the top right. The
bottom panel shows the advective (red) and third-order (blue) velocity structure functions calculated with
separation vectors across the satellite swath (dashed) and along the swath (solid). Note that the velocity

fields are estimated from satellite sea surface height measurements assuming geostrophic balance.
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Figure 3: Maps showing the 2D spatial variation of various velocity structure functions. The left panel
shows the advective velocity SF, the middle panel shows the third-order velocity SF, and the right panel

shows the second-order velocity SF. These SFs were calculated from the same data as Figure 1.
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Related Work

FluidSF uniquely contributes to the field through a combination of expanded data support, the
ability to diagnose a wide array of structure functions (including advective and blended SFs),
and tools for analyzing spatial variations in SFs. FluidSF was used to develop new methods
for estimating inter-scale geophysical energy fluxes (B. Pearson et al., 2025). There are several
open source software packages available that calculate aspects of spatial SFs. fastSF is a
parallelized C++ code designed to compute arbitrary-order SFs of velocity or scalars (but not
blended) from Cartesian grids of data (Sadhukhan et al., 2021). Fuchs et al. (2022) created
an open-source MATLAB toolkit that performs a variety of turbulence analyses, including
arbitrary-order longitudinal-velocity SFs. A complementary and alternative method to structure
functions for analyzing turbulence data is coarse-graining. FlowSieve is a primarily C4++
package that uses coarse-graining to estimate ocean and atmospheric turbulence properties
from Global Climate Model data (Storer & Aluie, 2023).
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