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Summary
Sampling from (constrained) high-dimensional distributions and volume approximation of
convex bodies are fundamental operations that appear in optimization, finance, engineering,
artificial intelligence, and machine learning. We present volesti, a C++ library that delivers
efficient implementations of state-of-the-art, mainly randomized, algorithms to sample from
general logarithmically concave (or log-concave) distributions. Based on these routines, we
can estimate the volume of convex bodies in high dimensions, round them, and compute
multidimensional integrals over them. The backbone of our library consists of Monte Carlo
algorithms, which are randomized algorithms, the output of which can be incorrect with (usually
very small) error probability; thus, we also provide several high-dimensional statistical tests to
certify and verify the output.

The focus of volesti is scalability in high dimensions, that, depending on the problem at
hand, could range from hundreds to thousands of dimensions. Another novelty is the ability
to handle a variety of different inputs for the constrained support of the various distributions.
volesti supports three different types of polyhedra (Ziegler, 1995), spectrahedra (Ramana &
Goldman, 1999), and general non-linear convex objects.

volesti relies on Eigen library (Guennebaud et al., 2010) for linear algebra but also supports
MKL optimizations (Intel Math Kernel Library (Intel MKL), 2024). There are R (Chalkis &
Fisikopoulos, 2021) and Python (Chalkis, Fisikopoulos, Tsigaridas, et al., 2023) interfaces
available.

Statement of need
High-dimensional sampling from multivariate distributions with Markov Chain Monte Carlo
(MCMC) algorithms is a fundamental problem with many applications in science and engineering
(Genz & Bretz, 2009; Iyengar, 1988; Schellenberger & Palsson, 2009; Somerville, 1998). In
particular, multivariate integration over a convex set as well as the volume approximation
of convex sets have garnered significant attention from theorists and engineers over the last
decades. Nevertheless, these problems are computationally hard for general dimensions (Dyer
& Frieze, 1988). MCMC algorithms made remarkable progress and their use allowed us to
efficiently tackle the problems of sampling and volume estimation of convex bodies in theory,
by the introduction of (rigorous) theoretical guarantees (Chen et al., 2018; Lee & Vempala,
2018; Mangoubi & Vishnoi, 2019). Unfortunately, these theoretical guarantees of the MCMC
algorithms do not extend in a straightforward manner to efficient implementations able to
attack problems coming from real-life computations. Therefore, we witnessed the birth of
efficient in practice MCMC algorithm that relax the theoretical guarantees and employ new
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algorithmic and statistical techniques to be amenable to efficient implementations. Remarkably,
these algorithms, and the corresponding implementations, also meet the requirements for high
accuracy results (Chalkis, Emiris, et al., 2023; Cousins & Vempala, 2016; Emiris & Fisikopoulos,
2014; Kook et al., 2022); however several existing published methods are only available as part
of propertiary packages (MATLAB) (Cousins & Vempala, 2016; Kook et al., 2022).

Our open-source package – volesti – offers all of the aforementioned functionality, to-
gether with the support of sampling from general log-concave densities (Chalkis, Fisikopoulos,
Papachristou, et al., 2023), and uniform sampling from spectrahedra (Chalkis et al., 2022).

Our implementation:

1. supports various sampling techniques based on geometric walks; roughly speaking these
are a continuous version of MCMC algorithms, such as Billard walk, Hamiltonian walk
and others,

2. gives the user the ability to sample from various distributions, like uniform, exponential,
Gaussian, and general log-concave densities,

3. allows to consider the distributions constrained in various convex domains, such as
hypercubes, zonotopes, general polytopes (defined either as a set of linear inequalities or
as a convex hull of a pointset), spectrahedra (feasible sets of semidefinite programs), and

4. can perform volume computations, integration, and solve problems from real life applica-
tions in very high dimensions.

Impact
volesti has been used extensively in various research and engineering projects coauthored
by the authors of this paper. In particular, for the problem of sampling the flux space of
metabolic networks we were able to sample from the most complicated human metabolic
network accessible today, Recon3D (Chalkis et al., 2021), to model financial crises (Calès et
al., 2023), to detect low volatility anomalies in stock markets (Bachelard et al., 2023), to
introduce randomized control in asset pricing and portfolio performance evaluation (Bachelard
et al., 2024)), and also to sample from (and compute the volume of) spectrahedra (Chalkis et
al., 2022), the feasible regions of semidefinite programs.

volesti has also been used by other research teams in conducting research in electric power
systems (Venzke et al., 2021), for problems in probabilistic inference (Spallitta et al., 2024),
to perform resource analysis on programs (Pham, 2024); and also for more theoretical and
mathematical challenges, like the computation of topological invariants (Maria & Rouillé, 2021)
and persistent homology (Vejdemo-Johansson & Mukherjee, 2022).
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