DOI: 10.21105/joss.07897

Software
= Review &7
= Repository &
= Archive 7

Editor: Hugo Ledoux &
Reviewers:

= QEwoutH
= Qjofmi

Submitted: 28 January 2025
Published: 09 January 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

The Journal of Open Source Software

Pop2net: Bipartite network generation for agent-based
modeling

1

Marius Kaffai ®'*, Lukas Erhard ©®*, and Maximilian Richter

1 University of Stuttgart, Germany * These authors contributed equally.

Summary

Agent-based modeling (ABM) is a scientific method used in fields such as social science, biology,
and ecology to simulate interactions of autonomous agents and study the resulting emergent
phenomena. The relationships between agents, which structure the simulated interactions,
are often represented by network graphs. Since empirical data on networks is rare, many
agent-based models rely on artificially generated networks (Amblard et al., 2015). Consequently,
generating a valid network structure at the beginning of a simulation is critical. Additionally,
accessing and modifying the network during the simulation are steps that must be managed in
almost any agent-based model.

Pop2net is a Python package that combines many steps related to network generation and
management for ABM using a bipartite approach. Bipartite networks consist of two distinct
types of entities where edges are only formed between entities of different types. In Pop2net,
relationships are represented as bipartite networks connecting actors and locations. When two
actors are linked to the same location, they are considered connected through that shared
location. In this way, locations serve as a contact layer between actors, representing places
where interactions occur or contexts that facilitate actor connections. The aim of Pop2net's
bipartite approach to relations is to simplify the generation and management of realistic network
structures in ABM.

Statement of Need

In Python, NetworkX (Hagberg et al., 2008) provides extensive control over network structures
and a wide range of ready-to-use network models. However, NetworkX was not originally
designed with ABM in mind, which can make managing networks or creating custom network
structures within ABM frameworks cumbersome and inflexible. While the built-in network
models are powerful, they are often too abstract to directly support the specific needs of ABM
applications.

ABM frameworks in Python—such as Mesa (Hoeven et al., 2025; Kazil et al., 2020), AgentPy
(Foramitti, 2021), and Melodie (Yu & Hou, 2023)—offer improved data structures for rep-
resenting and manipulating networks. However, they still lack advanced tools for generating
custom network topologies and provide only limited out-of-the-box support for bipartite graphs.

Pop2net aims to address this gap in the toolkit of agent-based modelers. Building upon
NetworkX, we provide an extensive tool designed to simplify and streamline the generation
of (empirically calibrated) bipartite networks for further use with common ABM frameworks.
While Pop2net is implemented in Python, to our knowledge, no comparable software exists in
other programming environments that offers the following features:

1. Bringing bipartite networks to agent-based modeling. Pop2net implements a bipartite

Kaffai et al. (2026). Pop2net: Bipartite network generation for agent-based modeling. Journal of Open Source Software, 11(117), 7897. 1
https://doi.org/10.21105/joss.07897.

https://orcid.org/0000-0002-8619-3362
https://orcid.org/0000-0002-4977-2947
https://orcid.org/0009-0005-5121-8266
https://doi.org/10.21105/joss.07897
https://github.com/openjournals/joss-reviews/issues/7897
https://github.com/mariuzka/pop2net
https://doi.org/10.5281/zenodo.18186972
https://3d.bk.tudelft.nl/hledoux
https://orcid.org/0000-0002-1251-8654
https://github.com/EwoutH
https://github.com/jofmi
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07897

The Journal of Open Source Software

approach to networks in ABM, which can simplify their creation and management by orga-
nizing relations through locations. Especially in models that simulate humans interacting
in specific places or connected through shared contexts, organizing relationships through
locations can be far more intuitive and easier to manage. While this approach is already
common in epidemiological ABM (e.g., Kerr et al. (2020), Vermeulen et al. (2021),
Kaffai & Heiberger (2021)), Pop2net is the first software package to generalize the
bipartite approach for ABM. Pop2net can serve as the foundation for custom simulation
frameworks or be seamlessly integrated into the widely used ABM frameworks Mesa and
AgentPy.

. Generating scalable and modular networks. Based on the bipartite approach, Pop2net

offers an innovative way of creating networks programmatically and modularly. Users
can quickly create complex networks based on different location definitions that are
translated into network structures. Each location definition contains a set of rules for
how agents connect, and can integrate empirical data as well as classic network models.

. Integrating micro-level data. Pop2net is designed to integrate empirical micro-level

data, e.g., from surveys, into the population and network generation processes. The
empirical micro-level data can be used to generate a population of actors and then refer
to the empirical attributes when determining the rules of how actors connect via location
definitions. This enables users, especially those from the social sciences, to ground
network generation in empirical data, even in the absence of detailed network data.

Software structure

Pop2net’s components can be categorized into three sectors.

1. Basic elements for bipartite networks in ABM. The first sector contains the three object

classes—Environment, Actor, and Location—that must always be used to facilitate the
bipartite network structure of Pop2net.

The Environment class is Pop2net’s main object that holds all entities and manages
their relations. It is designed for use within simulation models. Central attributes of the
Environment class are:

= A NetworkX graph object that stores all actors, locations, and their relationships.

= An actor list and a location list that provide convenient access to actor and location
objects.

= Various methods for managing tasks such as connecting actors and locations or
exporting the network.

Actors are the (inter)acting entities in the simulation—what is typically referred to as
agents in ABM. However, since Pop2net also treats locations as agents, especially when
integrated with frameworks like Mesa or AgentPy, we found it clearer to refer to the
primary acting entities as actors. Locations represent the places or contexts in which
actors interact. In Pop2net, every connection between actors must be mediated by a
location. Both actors and locations provide several methods which help to manage
relations during simulations—for example, to retrieve all associated locations or actors,
find neighboring actors within specific location types, or connect actors to one another
through certain locations. Using multiple inheritance, actors and locations can also be
integrated as agent objects into Mesa and AgentPy.

. Network generators. The classes Creator and LocationDesigner are the tools in Pop2net

that enable the user to generate custom (bipartite) networks in a modular and scalable
way. By defining location types using the LocationDesigner, users can, for instance,
quickly specify which agent should be connected to a certain location type, how many
location instances should be created, whether locations are nested within other locations,
or how strongly the connection between an actor and a location is weighted. Based on

Kaffai et al. (2026). Pop2net: Bipartite network generation for agent-based modeling. Journal of Open Source Software, 11(117), 7897. 2

https://doi.org/10.21105/joss.07897.

https://doi.org/10.21105/joss.07897

The Journal of Open Source Software

these definitions, the Creator class generates a bipartite network of actors and locations.
The generated networks and their components can serve as the basis for simulation
models or be exported to NetworkX in both bipartite and unipartite formats.

The Creator also provides convenient methods to generate actors and their attributes
directly from empirical micro-level data, e.g., survey data. Those empirically created
attributes support the creation of realistic network structures by including them in the
location definitions, for instance, the age or the household of the actors. Location types
can also incorporate network graphs based on empirical data or generated by NetworkX.

3. Inspection tools. The Networklnspector class provides methods for quick network analysis,
such as visualization and the calculation of network measures.

The diagram below visualizes Pop2net’s structure and workflow:

Network generation Network management Additional features
o
[m] p2n.Actor

T
1
1
I
1

‘

!
o el

&

ﬁ p2n.Location

_ Network export
! (unipartite & bipartite)
i
T
i
I___| p2n.Networkinspector
(visualization etc.)

Example of network generation
The following example demonstrates how to generate a network with different location types
and assign actors to these locations based on their attributes using Pop2net. It involves loading

micro-level data, defining rules for location creation and actor assignment, and finally sampling
and connecting actors to locations accordingly.

import pandas as pd
import pop2net as p2n

df = pd.read_csv("example_data.csv")

class City(p2n.LocationDesigner):
n_locations = 2

class Household(p2n.LocationDesigner):
def split(self, actor):

return actor.household_id
def weight(self, actor):

return 24 - actor.work_hours

Kaffai et al. (2026). Pop2net: Bipartite network generation for agent-based modeling. Journal of Open Source Software, 11(117), 7897. 3
https://doi.org/10.21105/joss.07897.

https://doi.org/10.21105/joss.07897

SS

The Journal of Open Source Software

design work places
class Work(p2n.LocationDesigner):
n_actors = 5 # set the number of actors per work location to 5

def split(self, actor):
"""Create separated work locations for each industry."""
return actor. industry

def weight(self, actor):
"""Set the weight between the actor and the location."""
return actor.work_hours

def filter(self, actor):

"""Only assign actors with more than @ work hours to this location type."""
return actor.work_hours > 0

create pop2net's main objects

env = p2n.Environment()

creator = p2n.Creator(env)

inspector = p2n.NetworkInspector(env)

create the agents and connect them
creator.create(
df=df, # sample from this data to create the actors
n_actors=100, # set the number of actors to 100
sample_level="household_1id", # sample whole households
location_designers=[
connect the actors via the following location types
City,
Household,
Work,
])

plot bipartite and unipartite networks
inspector.plot_networks(location_color="1label")

Kaffai et al. (2026). Pop2net: Bipartite network generation for agent-based modeling. Journal of Open Source Software, 11(117), 7897. 4
https://doi.org/10.21105/joss.07897.

https://doi.org/10.21105/joss.07897

Documentation

Pop2net offers user-friendly documentation, including API references and tutorials with inter-
active diagrams and example simulations.’

Acknowledgements

This work was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany's Excellence Strategy — EXC 2075 — 390740016.

We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation under the DFG reference number UP 31/1) for the Stuttgart Research Focus
Interchange Forum for Reflecting on Intelligent Systems (IRIS).

References

Amblard, F., Bouadjio-Boulic, A., Sureda Gutierrez, C., & Gaudou, B. (2015). Which models
are used in social simulation to generate social networks? A review of 17 years of publications
in JASSS. https://doi.org/10.1109/WSC.2015.7408556

Foramitti, J. (2021). AgentPy: A package for agent-based modeling in Python. Journal of
Open Source Software, 6(62), 3065. https://doi.org/10.21105/joss.03065

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics,
and function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings
of the 7th Python in Science Conference (pp. 11-15). https://doi.org/10.25080/tcwv9851

Hoeven, E. ter, Kwakkel, J., Hess, V., Pike, T., Wang, B., Rht, & Kazil, J. (2025). Mesa 3:
Agent-based modeling with Python in 2025. Journal of Open Source Software, 10(107),
7668. https://doi.org/10.21105/joss.07668

Kaffai, M., & Heiberger, R. H. (2021). Modeling non-pharmaceutical interventions in the
COVID-19 pandemic with survey-based simulations. PLOS ONE, 16(10), 0259108.
https://doi.org/10.1371/journal.pone.0259108

Kazil, J., Masad, D., & Crooks, A. (2020). Utilizing Python for agent-based modeling: The
Mesa framework. In R. Thomson, H. Bisgin, C. Dancy, A. Hyder, & M. Hussain (Eds.),

1The tutorials are available at: https://mariuzka.github.io/pop2net/index.html

Kaffai et al. (2026). Pop2net: Bipartite network generation for agent-based modeling. Journal of Open Source Software, 11(117), 7897. 5
https://doi.org/10.21105/joss.07897.

https://doi.org/10.1109/WSC.2015.7408556
https://doi.org/10.21105/joss.03065
https://doi.org/10.25080/tcwv9851
https://doi.org/10.21105/joss.07668
https://doi.org/10.1371/journal.pone.0259108
https://mariuzka.github.io/pop2net/index.html
https://doi.org/10.21105/joss.07897

The Journal of Open Source Software

Social, Cultural, and Behavioral Modeling (pp. 308-317). Springer International Publishing.
ISBN: 978-3-030-61255-9

Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Hart, G., Rosenfeld, K., Selvaraj,
P., Nunez, R. C., Hagedorn, B., George, L., I1zzo, A., Palmer, A., Delport, D., Bennette,
C., Wagner, B., Chang, S., Cohen, J. A., Panovska-Griffiths, J., Jastrzebski, M., .. Klein,
D. J. (2020). Covasim: An agent-based model of COVID-19 dynamics and interventions.
medRxiv, 2020.05.10.20097469. https://doi.org/10.1101/2020.05.10.20097469

Vermeulen, B., Miiller, M., & Pyka, A. (2021). Social network metric-based interventions?
Experiments with an agent-based model of the COVID-19 pandemic in a metropolitan
region. Journal of Artificial Societies and Social Simulation, 24(3), 6. https://doi.org/10.
18564 /jasss.4571

Yu, S., & Hou, Z. (2023). Melodie: Agent-based modeling in Python. Journal of Open Source
Software, 8(83), 5100. https://doi.org/10.21105/joss.05100

Kaffai et al. (2026). Pop2net: Bipartite network generation for agent-based modeling. Journal of Open Source Software, 11(117), 7897. 6
https://doi.org/10.21105/joss.07897.

https://doi.org/10.1101/2020.05.10.20097469
https://doi.org/10.18564/jasss.4571
https://doi.org/10.18564/jasss.4571
https://doi.org/10.21105/joss.05100
https://doi.org/10.21105/joss.07897

	Summary
	Statement of Need
	Software structure
	Example of network generation
	Documentation
	Acknowledgements
	References

