
ParquetDB: A Lightweight Python Parquet-Based
Database
Logan L. Lang 1, Eduardo R. Hernandez 2, Kamal Choudhary 3, and
Aldo H. Romero 1

1 Department of Physics, West Virginia University, Morgantown, United States 2 Instituto de Ciencia de
Materiales de Madrid, Madrid, Spain 3 National Institute of Standards and Technology, Gaithersburg,
United States

DOI: 10.21105/joss.07932

Software
• Review
• Repository
• Archive

Editor: Fabian Scheipl
Reviewers:

• @ckoerber
• @perdelt

Submitted: 03 March 2025
Published: 16 May 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
ParquetDB is a Python library serving as a “middleware” solution, bridging the gap between
file-based storage and full database systems. A key driver for its development was the need
to support iterative research workflows, requiring schema evolvability, the ability to manage
complex and evolving nested data structures without predefined rigidity, and the ability to
handle-table and field-level metadata. Additionally, its “classically serverless” nature was
a crucial design point for deployment in environments such as HPC clusters with limited
connectivity. Leveraging Apache Parquet (“Parquet,” n.d.; Apache Software Foundation,
n.d.), it combines file storage portability with advanced querying capabilities, enabling efficient
compression and read performance without dedicated server overhead. ParquetDB addresses
limitations in both traditional approaches by seamlessly handling complex data types (arrays,
nested structures, Python objects), simplifying data interaction compared to direct file
manipulation or manual serialization. Performance benchmarks show competitive read/write
speeds and effective query performance via predicate pushdown, demonstrating its utility for
managing medium-to-large datasets where database complexity is unwarranted but basic file
I/O is insufficient.

Statement of need
The demand for efficient, scalable, and adaptable data storage solutions is critical across
research domains. Traditional file formats (e.g., CSV, JSON, TXT) offer simplicity but suffer
from inefficiencies, particularly with numerical data due to ASCII/UTF encoding overhead,
leading to larger files and slower I/O. While binary formats like HDF5 (HDF5, n.d.) improve
efficiency for large numerical datasets, they function primarily as structured file containers,
lacking the rich querying APIs and transactional integrity features common in databases. These
file-based approaches often require manual data relationship management and lack built-in
indexing, hindering agility as projects scale or require rapid iteration.

Database systems like SQLite (Allen & Owens, 2010) or MongoDB (Guo, 2017) provide
robust encoding, indexing, and querying. Relational databases ensure integrity via structured
schemas but can be rigid when data models evolve (Pascal, 2000). NoSQL options offer
flexibility but may introduce consistency challenges or require complex optimization (Pivert,
2018). Furthermore, many databases involve server configurations or lack transparent file-based
portability, adding overhead unsuitable for lightweight experimentation or simpler deployment
scenarios. While SQLite is serverless and ubiquitous, its row-based nature can be less performant
for analytical queries scanning wide datasets compared to columnar formats, and managing
complex nested data can be cumbersome.

Lang et al. (2025). ParquetDB: A Lightweight Python Parquet-Based Database. Journal of Open Source Software, 10(109), 7932. https:
//doi.org/10.21105/joss.07932.

1

https://orcid.org/0000-0003-2867-1706
https://orcid.org/0000-0002-1164-2856
https://orcid.org/0000-0001-9737-8074
https://orcid.org/0000-0001-5968-0571
https://doi.org/10.21105/joss.07932
https://github.com/openjournals/joss-reviews/issues/7932
https://github.com/lllangWV/ParquetDB
https://doi.org/10.5281/zenodo.15438444
https://orcid.org/0000-0001-8172-3603
https://github.com/ckoerber
https://github.com/perdelt
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07932
https://doi.org/10.21105/joss.07932


Directly using libraries like Apache Arrow (PyArrow) to work with Parquet files offers access
to columnar efficiency and querying primitives like predicate pushdown. However, this still
requires developers to build abstractions for database-like operations (CRUD), manage schema
consistency across multiple files, handle serialization of complex Python objects, and orchestrate
data updates or deletions manually.

While powerful dataframe manipulation libraries like Pandas (Pandas, n.d.), Dask (Dask,
n.d.), and Polars (Polars, n.d.), or embedded analytical databases such as DuckDB (DuckDB,
n.d.) are invaluable for many tasks, they may not holistically address the specific needs that
motivated ParquetDB. For researchers dealing with evolving, complexly nested scientific data,
ParquetDB offers a more streamlined approach to schema evolvability and native Python object
persistence directly within a serverless Parquet-based ecosystem. This focus distinguishes it
from tools that might require more manual setup for schema management across multiple files,
or lack the same emphasis on integrated metadata handling and a ‘classically serverless’ model
for environments like HPC clusters.

ParquetDB addresses this gap, providing a “middleware” layer built upon Python and the
Parquet format. It offers a familiar database-like interface (CRUD operations) while leveraging
columnar storage for compression and read performance benefits. Crucially, ParquetDB adds
value beyond direct Parquet file manipulation by automating schema management (including
evolution), simplifying the storage/retrieval of complex Python objects, and providing a unified
API to manage collections of Parquet files as a single logical datastore. It supports predicate
and column pushdown for optimization within a lightweight, serverless architecture, offering a
pragmatic balance for scenarios demanding more than basic files but less than a full database
system, particularly where schema flexibility and ease of use are paramount. For a comprehensive
feature list, visit our documentation (https://parquetdb.readthedocs.io/en/latest/).

Benchmarks
We evaluated ParquetDB’s performance against SQLite and MongoDB using synthetic datasets
(100 integer columns, varying record counts). Our first experiment compared write and read
performance. ParquetDB’s creation times are competitive, performing second best behind
SQLite as dataset size increases. For bulk read operations, ParquetDB initially lags slightly but
significantly outperforms both competitors on larger datasets (beyond several hundred/thousand
rows), benefiting from Parquet’s columnar efficiency (see Figure 1).

Lang et al. (2025). ParquetDB: A Lightweight Python Parquet-Based Database. Journal of Open Source Software, 10(109), 7932. https:
//doi.org/10.21105/joss.07932.

2

https://doi.org/10.21105/joss.07932
https://doi.org/10.21105/joss.07932


Figure 1: Benchmark Create and Read Times for Different Databases. Create time is plotted on the left
y-axis, read time on the right y-axis, and the number of rows on the x-axis. A log plot is shown in the
inset.

A “needle-in-a-haystack” benchmark assessed specific record retrieval. While lacking traditional
B-tree indexes, ParquetDB uses predicate pushdown leveraging Parquet’s field-level statistics
for efficient filtering without full scans. It is important to note that performance advantages
depend on the workload; for instance, complex analytical queries involving aggregations or
returning small, highly filtered results might favor the mature query engine and indexing of
systems like SQLite. ParquetDB excels when querying or returning substantial portions of wide
datasets. Detailed benchmarks are in our extended paper: Lang et al. (2025).

Installation
For installation, please use pip:

pip install parquetdb

For more details, please visit the GitHub repository: https://github.com/lllangWV/ParquetDB.
The repository contains additional examples, API documentation, and guidelines for contributing
to the project.

Acknowledgements
We thank the Pittsburgh Supercomputer Center (Bridges2) and San Diego Supercomputer
Center (Expanse) through allocation DMR140031 from the Advanced Cyberinfrastructure
Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by
National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and
#2138296. We gratefully acknowledge the computational resources provided by the WVU
Research Computing Dolly Sods HPC cluster, partially funded by NSF OAC-2117575.
Additionally, we recognize the support from the West Virginia Higher Education Policy
Commission through the Research Challenge Grant Program 2022 (Award RCG 23-007), as
well as NASA EPSCoR (Award 80NSSC22M0173), for their contributions to this work. The
work of E.R.H. is supported by MCIN/AEI/ 10.13039/501100011033/FEDER, UE through

Lang et al. (2025). ParquetDB: A Lightweight Python Parquet-Based Database. Journal of Open Source Software, 10(109), 7932. https:
//doi.org/10.21105/joss.07932.

3

https://github.com/lllangWV/ParquetDB
https://doi.org/10.21105/joss.07932
https://doi.org/10.21105/joss.07932


projects PID2022-139776NB-C66. K.C. thanks funding from the CHIPS Metrology Program,
part of CHIPS for America, National Institute of Standards and Technology, U.S. Department
of Commerce. Certain commercial equipment, instruments, software, or materials are identified
in this paper in order to specify the experimental procedure adequately. Such identifications
are not intended to imply recommendation or endorsement by NIST, nor are they intended
to imply that the materials or equipment identified are necessarily the best available for the
purpose.

References
Allen, G., & Owens, M. (2010). The definitive guide to SQLite. Apress. https://doi.org/10.

1007/978-1-4302-3226-1

An in-process SQL OLAP database management system. (n.d.). Retrieved May 13, 2025,
from https://duckdb.org/

Dask | Scale the Python tools you love. (n.d.). Retrieved May 13, 2025, from https:
//www.dask.org/

Guo, R. (2017). MongoDB’s JavaScript fuzzer. Commun. ACM, 60(5), 43–47. https:
//doi.org/10.1145/3052937

HDF5 for Python — H5py 3.13.0 documentation. (n.d.). Retrieved April 28, 2025, from
https://docs.h5py.org/en/stable/index.html

Lang, L., Hernandez, E., Choudhary, K., & Romero, A. H. (2025). ParquetDB: A lightweight
Python Parquet-based database (No. arXiv:2502.05311). arXiv. https://doi.org/10.48550/
arXiv.2502.05311

Pandas - Python data analysis library. (n.d.). Retrieved May 13, 2025, from https://pandas.
pydata.org/

Parquet. (n.d.). In Apache Parquet. Retrieved October 21, 2024, from https://parquet.apache.
org/

Pascal, F. (2000). Practical issues in database management: A reference for the thinking
practitioner (1st edition). Addison-Wesley Professional. ISBN: 978-0-201-48555-4

Pivert, O. (Ed.). (2018). NoSQL data models: Trends and challenges (1st edition). Wiley-ISTE.
ISBN: 978-1-78630-364-6

Polars. (n.d.). Retrieved May 13, 2025, from https://www.pola.rs/

Welcome to the Apache Software Foundation. (n.d.). Retrieved April 28, 2025, from https:
//www.apache.org/

Lang et al. (2025). ParquetDB: A Lightweight Python Parquet-Based Database. Journal of Open Source Software, 10(109), 7932. https:
//doi.org/10.21105/joss.07932.

4

https://doi.org/10.1007/978-1-4302-3226-1
https://doi.org/10.1007/978-1-4302-3226-1
https://duckdb.org/
https://www.dask.org/
https://www.dask.org/
https://doi.org/10.1145/3052937
https://doi.org/10.1145/3052937
https://docs.h5py.org/en/stable/index.html
https://doi.org/10.48550/arXiv.2502.05311
https://doi.org/10.48550/arXiv.2502.05311
https://pandas.pydata.org/
https://pandas.pydata.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://www.pola.rs/
https://www.apache.org/
https://www.apache.org/
https://doi.org/10.21105/joss.07932
https://doi.org/10.21105/joss.07932

	Summary
	Statement of need
	Benchmarks
	Installation
	Acknowledgements
	References

