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Summary
AniSOAP is a package that translates coarse-grained molecular configurations into tensorial
representations that are ideal for supervised machine-learning models of thermodynamic
quantities and unsupervised data-driven analyses. It generalizes several popular spherical
representations for atomistic ML and aims to bridge the gap between two scientific communities:
the machine-learning enabled atomistic simulation community, which leverages ML to accelerate
and refine quantum modeling of complex interactions between spherical atoms, and the coarse-
grained and colloid modeling community, which focuses on understanding emergent behavior
of macroscopic particles with (plausibly) complex geometries. AniSOAP provides a common
framework to tackle scientific questions at the intersection of these two fields.

Statement of need
Machine learning (ML) has greatly advanced atomistic molecular dynamics (MD), enabling both
quick and quantum-accurate simulations and offering powerful tools for analyzing simulation
results. Key to these advancements are the increasingly sophisticated strategies and software
used to featurize atomistic environments that capture subtle differences between molecular
configurations, either explicitly (Bartók et al., 2013; Behler, 2011; Drautz, 2019) or implicitly
(Batatia et al., 2022; Batzner et al., 2022). These techniques have enabled supervised,
semisupervised, and unsupervised studies across a wide variety of chemical spaces (Cersonsky
et al., 2023; Cheng et al., 2019; De et al., 2016). However, these techniques are largely limited
to atomistic resolution, and fall short in reliably describing coarse-grained entities (“particles’’
or groups of atoms) that have anisotropic geometries, where it is essential to resolve the
orientation-dependence of their interactions with neighboring particles.

While many implementations construct spherical atomistic descriptors (e.g. DScribe (Himanen
et al., 2020), librascal (Librascal, 2021; Musil et al., 2021), featomic (Fraux et al., 2025)),
currently, there are no available packages for their anisotropic counterparts. In this software,
we present the implementation of AniSOAP, an anisotropic generalization of the popular
Smooth Overlap of Atomic Positions (SOAP) featurization (Bartók et al., 2013). SOAP, like
other atomistic representations, offers a concise and numerically efficient parameterization
of atomistic environments, incorporating correlations of the central atom with up to two of
its neighbors. Along with several methods that refine its construction (Dusson et al., 2022;
Nigam et al., 2020), it provides a framework to systematically build higher-order geometric
and symmetrized “fingerprints’’ that can be used to model complex interaction potentials
and extract machine-learning-enabled insights from data. AniSOAP extends this framework
by allowing individual particles to be non-spherical. Hence, AniSOAP can be used as a
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geometrically accurate, high body-order coarse-grained (CG) featurization of molecular and
macromolecular systems. As AniSOAP retains full compatibility with SOAP, two representations
can be used together to represent molecules at both atomistic and CG resolutions.

This is especially relevant as many systems cannot be simulated with all-atom resolution
in reasonable times, despite high-performance capabilities of machine-learning interatomic
potentials. Additionally, from a conceptual standpoint, we may not always want to analyze the
behavior of atoms, but superatomic entities, such as functional groups. Most CG techniques
still reduce macromolecules to a set of spherical beads. While often adequate for dilute
simulations, this reduction to spherical beads significantly oversimplifies anisotropy, which is
curcial in condensed systems (e.g., liquid crystals, glasses, molecular crystals). The flexibility
of the AniSOAP representation coupled with learning algorithms can help address these
challenges, as we can infer anisotropic coarse-graining from high-quality, first-principles data.
This featurization could be easily plugged into other software, enabling mesoscopic simulations
and enable data-driven insights to many chemical systems at different time and length scales.

The AniSOAP package enables the creation of AniSOAP feature vectors, which represent systems
of ellipsoidal particles. Analogous to how SOAP or ACE create atom-centered representations,
AniSOAP creates particle-centered representations, where a particle could be a single atom or
a coarsened group of several atoms. Lin et al. (2024) provided demonstrations of specific
use-cases of AniSOAP.

Implementation details
The AniSOAP package currently takes in as input a list of frames in the Atomic Simulation

Environment package (Hjorth Larsen et al., 2017). Each frame contains the particles’ positions,
dimensions, and orientations. If using periodic boundary conditions, the frame also needs to
contain the dimensions and orientations of the unit cell. Additional information about each
frame can also be stored (e.g. the system energy) and used as a target for supervised ML.

With this information, one can construct an EllipsoidalDensityProjection object, whose
main functionality is to calculate the expansion coefficients of an anisotropic density field in each
frame via the transform method. Procedurally, calculating the expansion coefficients amounts
to repeatedly and recursively computing high-order moments of an underlying multivariate
Gaussian (Lin et al., 2024). For efficient computation, we have ported these highly-repeated
calculations to Rust, a high-performance compiled language. The intermediate results utilize
the metatensor TensorMap format (Fraux et al., 2024), which efficiently stores the AniSOAP
featurizations and their associated metadata.

One can take Clebsch-Gordan products of these expansion coefficients to create higher body-
order descriptors, and we optimize this step by caching intermediate results with a Least
Recently Used (LRU) cache. This functionality is enabled by the anisoap.metatensor_utils

module in AniSOAP, in particular, the cg_combine function.

As many users will be primarily interested in power-spectrum (i.e. 3-body) representations, we
provide all the functionality required for these processes, and also provide the convenience
method power_spectrum to calculate the 3-body descriptors of each frame. By default,
this method returns the featurization as a 𝑛samples × 𝑛features NumPy array, which can be
used as input into a machine learning algorithm. Alternatively, by setting the keyword
argument mean_over_samples=False, this method returns a metatensor TensorMap object,
which contains the power-spectrum representation for each atom in each frame as well as
associated metadata. This is a much larger, unaggregated data object that requires more
processing before it can be used in an ML algorithm. Examples of the various ways of creating
AniSOAP representations can be found in the examples section of our documentation (Lin et
al., 2025).

The library is thoroughly tested and documented, with unit-tests to test basic functionality,
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integration-tests to ensure that AniSOAP vectors are calculated correctly, and caching and
speed tests to ensure that our aforementioned optimizations yield faster code. These tests
are integrated into a Github Continuous Integration (CI), and we ensure that future features
should necessistate additional tests and should pass existing ones.

Conclusion and future developments
AniSOAP is a powerful featurization that can be used for supervised and unsupervised analyses
of molecular systems. AniSOAP is under active development and we envision it being used
in a wide variety of contexts. Our main future development goals involve using AniSOAP as
the underlying representation for machine-learned anisotropic potentials, and to understand
how the relationship between AniSOAP and its all-atom counterpart SOAP fits into the broad
theory of bottom-up coarse-graining. We hope that accomplishing these goals can enable fast,
accurate, and interpretable macromolecular or colloidal simulations.
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